सन्निकटन: Difference between revisions
(formulas) |
(added content) |
||
Line 1: | Line 1: | ||
सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक संख्या अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं। | सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक [[संख्या]] अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं। | ||
मान लें कि <math>f</math> एक दिया गया फलन है और <math>y = f(x)</math> है। मान लें कि<math>\bigtriangleup x, x</math>में एक छोटी वृद्धि को दर्शाता है। | मान लें कि <math>f</math> एक दिया गया फलन है और <math>y = f(x)</math> है। मान लें कि<math>\bigtriangleup x, x</math>में एक छोटी वृद्धि को दर्शाता है। | ||
Line 20: | Line 20: | ||
समाधान''':''' | समाधान''':''' | ||
यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फलन का अनुमानित मान ज्ञात करने के लिए अवकलन का उपयोग करना होगा। | यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फलन का अनुमानित मान ज्ञात करने के लिए [[अवकलनीयता|अवकलन]] का उपयोग करना होगा। | ||
मान लें कि <math>f(x) =\sqrt{x }</math> और इसका अवकलज <math>f'(x)= 1/2x^{1/2}</math> है | मान लें कि <math>f(x) =\sqrt{x }</math> और इसका अवकलज <math>f'(x)= 1/2x^{1/2}</math> है |
Revision as of 13:03, 4 December 2024
सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक संख्या अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं।
मान लें कि एक दिया गया फलन है और है। मान लें किमें एक छोटी वृद्धि को दर्शाता है।
अब में वृद्धि में वृद्धि की तरह है, जिसे द्वारा दर्शाया गया है
, द्वारा दिया गया है
हम निम्नलिखित को परिभाषित करते हैं:
(i) ( का अवकलन ) द्वारा परिभाषित किया जाता है।
(ii) ( का अवकलन ) or द्वारा परिभाषित किया गया है।
यदि , की तुलना में अपेक्षाकृत छोटा है।
उदाहरण:
उदाहरण: का सन्निकटन मान ज्ञात कीजिए।
समाधान:
यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फलन का अनुमानित मान ज्ञात करने के लिए अवकलन का उपयोग करना होगा।
मान लें कि और इसका अवकलज है
अब हम सन्निकटन का सूत्र जानते हैं
यहां हम को के करीब मानेंगे जो कि एक पूर्ण वर्ग है।
इसलिए हम मान लेंगे
यहाँ में परिवर्तन बताया गया है। मान लीजिए और अब हम मानों को सूत्र में डालेंगे
सन्निकटन और त्रुटियाँ
यदि हम के व्युत्पन्न का उपयोग करते हैं तो यह हमें अनंत रूप से छोटे अंतराल पर में सटीक परिवर्तन देता है। जैसा कि हम जानते हैं कि परिवर्तन की तात्कालिक दर को में परिवर्तन के लिए असतत मान के रूप में सीमा का उपयोग करके परिभाषित किया जाता है ताकि शून्य हो जाए।
उदाहरण: का मान ज्ञात कीजिए ।
समाधान:
मान लीजिए
मान लीजिए तो