लीलावती में 'घन': Difference between revisions
(New Mathematics Organic Hindi Translated Page Created) |
(added category) |
||
Line 207: | Line 207: | ||
==संदर्भ== | ==संदर्भ== | ||
[[Category:गणित]] | [[Category:गणित]] | ||
<references /> | |||
[[Category:सामान्य श्रेणी]] | |||
[[Category:लीलावती]] | [[Category:लीलावती]] |
Revision as of 10:53, 21 June 2023
भूमिका
यहां हम जानेंगे कि लीलावती में वर्णित किसी संख्या का घन कैसे निकाला जाता है।
श्लोक सं.24 :
समत्रिघातश्च घनः प्रदिष्टः
स्थाप्यो घनोऽन्त्यस्य ततोऽन्त्यवर्गः ।
आदित्रिनिघ्नस्तत आदिवर्ग:
त्र्यन्त्याहतोऽथादिघनश्च सर्वे ॥ 24 ॥
अनुवाद :
किसी दी गई संख्या का घन, उसका गुणनफल होता है जिसमें स्वयं तीन बार होता है।[1] यदि हम दो अंकों की संख्या, जैसे 10a + b, का घन ज्ञात करना चाहते हैं, तो पहले a3 लिखें। इसके नीचे इस परिणाम को एक स्थान दाहिनी ओर स्थानांतरित कर 3a2 b लिखें। इसके नीचे दाहिनी ओर एक स्थान स्थानांतरित कर 3ab2 लिखिए। इसके नीचे दाईं ओर एक स्थान स्थानांतरित कर b3 लिखें। सभी परिणाम जोड़ें, और परिणाम घन है। इस प्रक्रिया को b से शुरू करके संशोधित किया जा सकता है लेकिन फिर हर बार बाईं ओर स्थानांतरित की जानी चाहिए। यदि दो से अधिक अंक हैं, तो सबसे बाईं ओर के दो अंकों का घन ज्ञात करें और ऊपर दी गई प्रक्रिया को जारी रखें।
उदाहरण: 27 का घन
27 = 10 X 2 + 7 जो कि 10a + b का रूप है, जहाँ a = 2 और b = 7
a3 = 23 | 8 | 8 | |||||||||
3a2b = 3 X 22X 7 | 8 | 4 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 8 | 4 | ||||||
3ab2 = 3 X 2 X 72 | 2 | 9 | 4 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 2 | 9 | 4 | ||||
b3 = 73 | 3 | 4 | 3 | 3 | 4 | 3 | |||||
1 | 9 | 6 | 8 | 3 |
उत्तर : 273 = 19683
उदाहरण: 125 का घन
125 = 10 X 12 + 5 जो कि 10a + b का रूप है, जहाँ a = 12 और b = 5
a3 = 123 (नीचे की गणना देखें) | 1 | 7 | 2 | 8 | 1 | 7 | 2 | 8 | ||||
3a2b = 3 X 122X 5 | 2 | 1 | 6 | 0 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 2 | 1 | 6 | 0 | |||
3ab2 = 3 X 12 X 52 | 9 | 0 | 0 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 9 | 0 | 0 | |||||
b3 = 53 | 1 | 2 | 5 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 1 | 2 | 5 | |||||
1 | 9 | 5 | 3 | 1 | 2 | 5 |
आइए हम 123 ज्ञात करें
12 = 10 X 1 + 2 जो 10a + b का रूप है, जहाँ a = 1 और b = 2
a3 = 13 | 1 | 1 | |||||
3a2b = 3 X 12X 2 | 6 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 6 | ||||
3ab2 = 3 X 1 X 22 | 1 | 2 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 1 | 2 | ||
b3 = 23 | 8 | इसे एक स्थान दाईं ओर स्थानांतरित करें | 8 | ||||
1 | 7 | 2 | 8 |
123 = 1728
उत्तर : 1253 = 1953125
यह भी देखें
संदर्भ
- ↑ (भास्कराचार्य की लीलावती - वैदिक परंपरा के गणित का ग्रंथ। नई दिल्लीः मोतीलाल बनारसीदास पब्लिशर्स। 2001. पृष्ठ- 27-29. ISBN 81-208-1420-7.।)"Līlāvatī Of Bhāskarācārya - A Treatise of Mathematics of Vedic Tradition. New Delhi: Motilal Banarsidass Publishers. 2001. pp. 27-29. ISBN 81-208-1420-7."