सादिशों का गुणन: Difference between revisions
Listen
m (added Category:समतल में गति using HotCat) |
No edit summary |
||
Line 1: | Line 1: | ||
Multiplication of vectors | Multiplication of vectors | ||
वेक्टर गुणन की अवधारणा आम तौर पर अदिश गुणन और डॉट उत्पाद को संदर्भित करती है। क्रॉस उत्पाद आमतौर पर उच्च-स्तरीय गणित पाठ्यक्रमों में पेश किया जाता है। यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है, जो आमतौर पर ग्रेड 11 के स्तर पर कवर की जाती है: | |||
स्केलर गुणज: | |||
अदिश गुणन में एक सदिश को एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को वेक्टर के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास घटकों (A₁, A₂, A₃) और एक अदिश c के साथ एक वेक्टर A है, तो अदिश गुणन की गणना इस प्रकार की जाती है: | |||
सी * ए = (सी * ए₁, सी * ए₂, सी * ए₃) | |||
परिणाम एक नया वेक्टर है जिसमें प्रत्येक घटक को स्केलर मान द्वारा स्केल किया गया है। | |||
अदिश गुणन के गुण: | |||
वितरण गुण: c * (A B) = c * A c * B (जहाँ c एक अदिश राशि है और A, B सदिश हैं) | |||
सहयोगी संपत्ति: (सी * डी) * ए = सी * (डी * ए) (जहां सी और डी अदिश हैं और ए एक वेक्टर है) | |||
पहचान गुण: 1 * ए = ए (जहाँ 1 गुणक पहचान है) | |||
डॉट उत्पाद (स्केलर उत्पाद): | |||
दो वैक्टरों का डॉट उत्पाद एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो वेक्टर A और B हैं, तो उनके डॉट उत्पाद की गणना इस प्रकार की जाती है: | |||
ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃) | |||
परिणाम एक अदिश मान है. | |||
डॉट उत्पाद के गुण: | |||
क्रमविनिमेय संपत्ति: ए · बी = बी · ए | |||
वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी वेक्टर हैं) | |||
साहचर्य गुण: (सी * ए) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी वेक्टर हैं) | |||
इन अवधारणाओं और गुणों को समझने से वेक्टर बीजगणित और इसके अनुप्रयोगों की आगे की खोज के लिए एक ठोस आधार मिलेगा। | |||
[[Category:समतल में गति]] | [[Category:समतल में गति]] |
Revision as of 15:16, 24 June 2023
Multiplication of vectors
वेक्टर गुणन की अवधारणा आम तौर पर अदिश गुणन और डॉट उत्पाद को संदर्भित करती है। क्रॉस उत्पाद आमतौर पर उच्च-स्तरीय गणित पाठ्यक्रमों में पेश किया जाता है। यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है, जो आमतौर पर ग्रेड 11 के स्तर पर कवर की जाती है:
स्केलर गुणज:
अदिश गुणन में एक सदिश को एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को वेक्टर के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास घटकों (A₁, A₂, A₃) और एक अदिश c के साथ एक वेक्टर A है, तो अदिश गुणन की गणना इस प्रकार की जाती है:
सी * ए = (सी * ए₁, सी * ए₂, सी * ए₃)
परिणाम एक नया वेक्टर है जिसमें प्रत्येक घटक को स्केलर मान द्वारा स्केल किया गया है।
अदिश गुणन के गुण:
वितरण गुण: c * (A B) = c * A c * B (जहाँ c एक अदिश राशि है और A, B सदिश हैं)
सहयोगी संपत्ति: (सी * डी) * ए = सी * (डी * ए) (जहां सी और डी अदिश हैं और ए एक वेक्टर है)
पहचान गुण: 1 * ए = ए (जहाँ 1 गुणक पहचान है)
डॉट उत्पाद (स्केलर उत्पाद):
दो वैक्टरों का डॉट उत्पाद एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो वेक्टर A और B हैं, तो उनके डॉट उत्पाद की गणना इस प्रकार की जाती है:
ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃)
परिणाम एक अदिश मान है.
डॉट उत्पाद के गुण:
क्रमविनिमेय संपत्ति: ए · बी = बी · ए
वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी वेक्टर हैं)
साहचर्य गुण: (सी * ए) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी वेक्टर हैं)
इन अवधारणाओं और गुणों को समझने से वेक्टर बीजगणित और इसके अनुप्रयोगों की आगे की खोज के लिए एक ठोस आधार मिलेगा।