सादिशों का गुणन: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
अदिश गुणन : | अदिश गुणन : | ||
अदिश गुणन में एक सदिश को एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को | अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को सादिश के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास <math>(A_1, A_2, A_3)</math> घटकों और एक अदिश <math>c</math> के साथ एक सादिश <math>A</math> है, तो अदिश गुणन की गणना इस प्रकार की जाती है: | ||
<math>c * A = (c * A_1, c * A_2, c * A_3)</math> | |||
परिणाम एक नया | परिणाम एक नया सादिश है जिसमें प्रत्येक घटक को अदिश मान द्वारा मानित (स्केल) किया गया है। | ||
अदिश गुणफलन के गुण: | अदिश गुणफलन के गुण: | ||
वितरण गुण: c * (A B) = c * A c * B (जहाँ c एक अदिश राशि है और A, B सदिश हैं) | वितरण गुण:<math>c * (A + B) = c * A + c * B</math>(जहाँ <math>c</math> एक अदिश राशि है और <math>A,B</math> सदिश हैं) | ||
सहयोगी संपत्ति: ( | सहयोगी संपत्ति: <math>(c * d) * A = c * (d * A)</math> (जहां <math>c</math> और <math>d</math> अदिश हैं और <math>A</math> एक सादिश है) | ||
पहचान गुण: 1 * | पहचान गुण: <math>1 * A = A</math>(जहाँ 1 गुणक पहचान है) | ||
बिंदु (डॉट)-गुणनफल (अदिश गुणनफल): | बिंदु (डॉट)-गुणनफल (अदिश गुणनफल): | ||
दो सादिशों का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो | दो सादिशों का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो सादिश A और B हैं, तो उनके बिंदु गुणनफल की गणना इस प्रकार की जाती है: | ||
ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃) | ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃) | ||
Line 31: | Line 31: | ||
क्रमविनिमेय संपत्ति: ए · बी = बी · ए | क्रमविनिमेय संपत्ति: ए · बी = बी · ए | ||
वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी | वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी सादिश हैं) | ||
साहचर्य गुण: (सी * ए) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी | साहचर्य गुण: (सी * ए) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी सादिश हैं) | ||
इन अवधारणाओं और गुणों को समझने से | इन अवधारणाओं और गुणों को समझने से सादिश बीजगणित और इसके अनुप्रयोगों की आगे की खोज के लिए एक ठोस आधार मिलेगा। | ||
[[Category:समतल में गति]] | [[Category:समतल में गति]] |
Revision as of 15:51, 24 June 2023
Multiplication of vectors
सादिशों का गुणन की अवधारणा आम तौर पर अदिश गुणन और बिंदु गुणनफल को संदर्भित करती है।अनुप्रस्थ गुणन आमतौर पर उच्च-स्तरीय गणित पाठ्यक्रमों में पेश किया जाता है। यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है :
अदिश गुणन :
अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को सादिश के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास घटकों और एक अदिश के साथ एक सादिश है, तो अदिश गुणन की गणना इस प्रकार की जाती है:
परिणाम एक नया सादिश है जिसमें प्रत्येक घटक को अदिश मान द्वारा मानित (स्केल) किया गया है।
अदिश गुणफलन के गुण:
वितरण गुण:(जहाँ एक अदिश राशि है और सदिश हैं)
सहयोगी संपत्ति: (जहां और अदिश हैं और एक सादिश है)
पहचान गुण: (जहाँ 1 गुणक पहचान है)
बिंदु (डॉट)-गुणनफल (अदिश गुणनफल):
दो सादिशों का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो सादिश A और B हैं, तो उनके बिंदु गुणनफल की गणना इस प्रकार की जाती है:
ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃)
परिणाम एक अदिश मान है.
बिंदु गुणनफल के गुण:
क्रमविनिमेय संपत्ति: ए · बी = बी · ए
वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी सादिश हैं)
साहचर्य गुण: (सी * ए) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी सादिश हैं)
इन अवधारणाओं और गुणों को समझने से सादिश बीजगणित और इसके अनुप्रयोगों की आगे की खोज के लिए एक ठोस आधार मिलेगा।