कार्नो इंजन: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
यहां, <math>T_c</math> कम तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है, और <math>Th</math> उच्च तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है।कार्नोट इंजन, की मुख्य अंतर्दृष्टि, यह है कि, यह समान तापमान भंडारों के बीच चलने वाले, सभी ताप इंजनों के बीच अधिकतम संभव दक्षता प्राप्त करता है। इसका तात्पर्य यह है कि समान तापमान सीमा के बीच संचालन करते समय, कोई भी वास्तविक इंजन, कार्नोट इंजन से अधिक कुशल नहीं हो सकता है। | यहां, <math>T_c</math> कम तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है, और <math>Th</math> उच्च तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है।कार्नोट इंजन, की मुख्य अंतर्दृष्टि, यह है कि, यह समान तापमान भंडारों के बीच चलने वाले, सभी ताप इंजनों के बीच अधिकतम संभव दक्षता प्राप्त करता है। इसका तात्पर्य यह है कि समान तापमान सीमा के बीच संचालन करते समय, कोई भी वास्तविक इंजन, कार्नोट इंजन से अधिक कुशल नहीं हो सकता है। | ||
[[Category:उष्मागतिकी]][[Category:कक्षा-11]] | [[Category:उष्मागतिकी]][[Category:कक्षा-11]][[Category:भौतिक विज्ञान]] |
Revision as of 11:47, 3 August 2023
Carnot's Engine
कार्नोट इंजन, एक सैद्धांतिक ताप इंजन है, जो ऊष्मगतिकी के सिद्धांतों पर काम करता है। इसे 19वीं शताब्दी में फ्रांसीसी इंजीनियर सादी कार्नोट द्वारा विकसित किया गया था और यह ऊष्मा इंजन द्वारा प्राप्त की जा सकने वाली, अधिकतम दक्षता, को समझने के लिए एक सैद्धांतिक आदर्श के रूप में कार्य करता है।
यहां कार्नोट इंजन की व्याख्या दी गई है:
ऊष्मा इंजन: ऊष्मा इंजन एक उपकरण है जो तापीय ऊर्जा को यांत्रिक कार्य में परिवर्तित करता है। यह उच्च तापमान वाले जलाशय से ऊष्मा ऊर्जा लेकर काम करता है, और फिर कुछ ऊर्जा को कम तापमान वाले संग्रह में छोड़ता है। ऊष्मा इंजन के उदाहरणों में भाप इंजन, आंतरिक दहन इंजन और गैस टर्बाइन शामिल हैं।
कार्नोट इंजन सिद्धांत:
कार्नोट का इंजन ऊष्मागतिकी के दो मूलभूत सिद्धांतों पर आधारित है:
1. कार्नोट चक्र: कार्नोट इंजन, एक सैद्धांतिक ऊष्मगतिकी चक्र पर काम करता है जिसे कार्नोट चक्र के रूप में जाना जाता है। कार्नोट चक्र में चार चरण होते हैं: समतापी विस्तार, रुद्धोष्म विस्तार, समतापी संपीड़न और रुद्धोष्म संपीड़न। इन चरणों के दौरान, इंजन दो ऊष्मा भंडारों, एक उच्च-तापमान भंडार () और एक निम्न-तापमान भंडार () के साथ संपर्क करता है।
2. प्रतिवर्ती प्रक्रिया: कार्नोट इंजन मानता है कि इंजन के भीतर सभी प्रक्रियाएं प्रतिवर्ती हैं। प्रतिवर्ती प्रक्रिया, वह है, जिसे परिवेश पर कोई चिन्ह छोड़े बिना उलटा किया जा सकता है। जबकि व्यावहारिक इंजनों में वास्तविक उत्क्रमणीयता प्राप्त नहीं की जा सकती, यह दक्षता की सीमाओं को समझने के लिए एक आदर्श अवधारणा के रूप में कार्य करती है।
कार्नोट इंजन की दक्षता: ऊष्मा इंजन की दक्षता को उपयोगी कार्य, निर्गत और ऊष्मा ऊर्जा,आगत के अनुपात के रूप में परिभाषित किया जाता है। कार्नोट इंजन की दक्षता, द्वारा निरूपित, सूत्र द्वारा दी गई है:
यहां, कम तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है, और उच्च तापमान वाले संग्रह के पूर्ण तापमान का प्रतिनिधित्व करता है।कार्नोट इंजन, की मुख्य अंतर्दृष्टि, यह है कि, यह समान तापमान भंडारों के बीच चलने वाले, सभी ताप इंजनों के बीच अधिकतम संभव दक्षता प्राप्त करता है। इसका तात्पर्य यह है कि समान तापमान सीमा के बीच संचालन करते समय, कोई भी वास्तविक इंजन, कार्नोट इंजन से अधिक कुशल नहीं हो सकता है।