दो विमाओं के आपेक्षिक वेग: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
Line 24: Line 24:


क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है।
क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है।
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]][[Category:कक्षा-11]]

Revision as of 13:04, 3 August 2023

Relative velocity in two dimensions

दो आयामों में सापेक्ष वेग किसी वस्तु के वेग को संदर्भित करता है जैसा कि किसी अन्य वस्तु या संदर्भ के फ्रेम के परिप्रेक्ष्य से देखा जाता है। यह वेग के क्षैतिज और ऊर्ध्वाधर दोनों घटकों को ध्यान में रखता है।

आइए दो वस्तुओं, और पर विचार करें, जो दो विमाओं में घूम रही हैं। वस्तु के संदर्भ में वस्तु का वेग के रूप में दर्शाया गया है। सापेक्ष वेग की गणना करने के लिए, हम के वेग से का वेग घटाते हैं:

दो विमाओं के परिदृश्य में, वेगों को सदिशों के रूप में व्यक्त किया जाता है, जिसमें परिमाण और दिशा दोनों शामिल होते हैं। इसलिए, सापेक्ष वेग की गणना करते समय, हमें वेगों की सदिश प्रकृति पर विचार करने की आवश्यकता है।

यदि वेग उनके क्षैतिज और ऊर्ध्वाधर घटकों के संदर्भ में दिए गए हैं, तो हम संबंधित घटकों को घटाकर सापेक्ष वेग की गणना कर सकते हैं:

परिणामी और मान क्रमशः सापेक्ष वेग वेक्टर के क्षैतिज और ऊर्ध्वाधर घटकों का प्रतिनिधित्व करते हैं। सापेक्ष वेग का परिमाण और दिशा ज्ञात करने के लिए, हम परिणामी वेक्टर :

की गणना करने के लिए इन घटकों का उपयोग कर सकते हैं ।

सापेक्ष वेग वेक्टर की दिशा उपयुक्त चतुर्भुजों को ध्यान में रखते हुए जैसे त्रिकोणमितीय कारजों का उपयोग करके निर्धारित की जा सकती है।

क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है।