एकल झिरी: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Single Slit | Single Slit | ||
तरंग प्रकाशिकी में एकल स्लिट की अवधारणा एक मौलिक विचार है जो हमें यह समझने में मदद करती है कि प्रकाश या अन्य तरंगें एक संकीर्ण उद्घाटन या एपर्चर से गुजरने पर कैसे व्यवहार करती हैं। | |||
== एकल स्लिट विवर्तन == | |||
जब कोई तरंग, जैसे प्रकाश, एक संकीर्ण भट्ठा या छिद्र से होकर गुजरती है, तो यह दूसरी तरफ एक साधारण छाया उत्पन्न नहीं करती है। इसके बजाय, यह विवर्तित या फैल जाता है, जिससे स्क्रीन पर बारी-बारी से उज्ज्वल और अंधेरे क्षेत्रों का एक पैटर्न बनता है। इस घटना को एकल-स्लिट विवर्तन कहा जाता है। | |||
== गणितीय प्रतिनिधित्व == | |||
एकल-स्लिट विवर्तन के गणितीय विवरण में विवर्तन का कोण (θ), तरंग की तरंग दैर्ध्य (λ), स्लिट की चौड़ाई (a), और विवर्तन पैटर्न (m) का क्रम शामिल है। यहां एकल-स्लिट विवर्तन में विवर्तन कोण का समीकरण दिया गया है: | |||
<math> \sin\theta=m\cdot\frac{\lambda}{a} </math> | |||
जहाँ: | |||
θ विवर्तन का कोण है। | |||
λ तरंग की तरंगदैर्ध्य है (उदाहरण के लिए, प्रकाश की तरंगदैर्घ्य)। | |||
m विवर्तन पैटर्न के क्रम का प्रतिनिधित्व करने वाला एक पूर्णांक (सकारात्मक या नकारात्मक) है। | |||
a द्वारक का आकार है। | |||
== महत्वपूर्ण अवधारणाएं == | |||
====== केंद्रीय अधिकतम (m = 0) ====== | |||
जब m=0, आपको केंद्रीय अधिकतम मिलता है। यह विवर्तन पैटर्न में एक चमकीला, विस्तृत केंद्रीय क्षेत्र है। | |||
====== सेकेंडरी मैक्सिमा (m ≠ 0) ====== | |||
शून्य के अलावा m के मानों के लिए, आपके पास सेकेंडरी मैक्सिमा और मिनिमा हैं। ये केंद्रीय अधिकतम के दोनों ओर बारी-बारी से उज्ज्वल और अंधेरे फ्रिज हैं। | |||
====== चौड़ा स्लिट, संकीर्ण पैटर्न ====== | |||
एक चौड़ा स्लिट (a) एक संकीर्ण विवर्तन पैटर्न उत्पन्न करेगा, जबकि एक संकीर्ण स्लिट के परिणामस्वरूप व्यापक पैटर्न बनेगा। | |||
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Revision as of 17:47, 7 September 2023
Single Slit
तरंग प्रकाशिकी में एकल स्लिट की अवधारणा एक मौलिक विचार है जो हमें यह समझने में मदद करती है कि प्रकाश या अन्य तरंगें एक संकीर्ण उद्घाटन या एपर्चर से गुजरने पर कैसे व्यवहार करती हैं।
एकल स्लिट विवर्तन
जब कोई तरंग, जैसे प्रकाश, एक संकीर्ण भट्ठा या छिद्र से होकर गुजरती है, तो यह दूसरी तरफ एक साधारण छाया उत्पन्न नहीं करती है। इसके बजाय, यह विवर्तित या फैल जाता है, जिससे स्क्रीन पर बारी-बारी से उज्ज्वल और अंधेरे क्षेत्रों का एक पैटर्न बनता है। इस घटना को एकल-स्लिट विवर्तन कहा जाता है।
गणितीय प्रतिनिधित्व
एकल-स्लिट विवर्तन के गणितीय विवरण में विवर्तन का कोण (θ), तरंग की तरंग दैर्ध्य (λ), स्लिट की चौड़ाई (a), और विवर्तन पैटर्न (m) का क्रम शामिल है। यहां एकल-स्लिट विवर्तन में विवर्तन कोण का समीकरण दिया गया है:
जहाँ:
θ विवर्तन का कोण है।
λ तरंग की तरंगदैर्ध्य है (उदाहरण के लिए, प्रकाश की तरंगदैर्घ्य)।
m विवर्तन पैटर्न के क्रम का प्रतिनिधित्व करने वाला एक पूर्णांक (सकारात्मक या नकारात्मक) है।
a द्वारक का आकार है।
महत्वपूर्ण अवधारणाएं
केंद्रीय अधिकतम (m = 0)
जब m=0, आपको केंद्रीय अधिकतम मिलता है। यह विवर्तन पैटर्न में एक चमकीला, विस्तृत केंद्रीय क्षेत्र है।
सेकेंडरी मैक्सिमा (m ≠ 0)
शून्य के अलावा m के मानों के लिए, आपके पास सेकेंडरी मैक्सिमा और मिनिमा हैं। ये केंद्रीय अधिकतम के दोनों ओर बारी-बारी से उज्ज्वल और अंधेरे फ्रिज हैं।
चौड़ा स्लिट, संकीर्ण पैटर्न
एक चौड़ा स्लिट (a) एक संकीर्ण विवर्तन पैटर्न उत्पन्न करेगा, जबकि एक संकीर्ण स्लिट के परिणामस्वरूप व्यापक पैटर्न बनेगा।