समांतर माध्य: Difference between revisions

From Vidyalayawiki

No edit summary
Line 26: Line 26:


समांतर माध्य  <math>=\frac{f_1n_1+f_2n_2+f_3n_3.......+f_nn_n}{f_1+f_2+f_3+.....f_n}</math>
समांतर माध्य  <math>=\frac{f_1n_1+f_2n_2+f_3n_3.......+f_nn_n}{f_1+f_2+f_3+.....f_n}</math>
== समांतर माध्य माध्य के गुण ==
== समांतर माध्य के गुण ==


# यदि आंकड़ों के समूह में सभी मान समान हैं , तो आंकड़ों के समूह का समांतर माध्य आंकड़ों के समूह का व्यक्तिगत मान होगा ,अर्थात यदि अवलोकन के मान  <math>p,p,p,p,p,....p</math> पदों तक हैं , तो समांतर माध्य <math>p</math> होता है ।
# यदि आंकड़ों के समूह में सभी मान समान हैं , तो आंकड़ों के समूह का समांतर माध्य आंकड़ों के समूह का व्यक्तिगत मान होगा ,अर्थात यदि अवलोकन के मान  <math>p,p,p,p,p,....p</math> पदों तक हैं , तो समांतर माध्य <math>p</math> होता है ।
# समांतर माध्य से अवलोकनों के एक समूह में सभी मानों के विचलन का योग शून्य होता है ।
# समांतर माध्य से अवलोकनों के एक समूह में सभी मानों के विचलन का योग शून्य होता है ।
# यदि हम आंकड़ों के समूह के सभी मानों को एक निश्चित मान से बढ़ाते या घटाते हैं, तो समांतर माध्य में उसी मान से वृद्धि या कमी होती है ।
# यदि हम आंकड़ों के समूह के सभी मानों को एक निश्चित मान से बढ़ाते या घटाते हैं, तो समांतर माध्य में उसी मान से वृद्धि या कमी होती है ।
Line 36: Line 36:
प्रथम <math>5</math> सम संख्याओं का समांतर माध्य ज्ञात कीजिए ?
प्रथम <math>5</math> सम संख्याओं का समांतर माध्य ज्ञात कीजिए ?


हल
'''हल'''


प्रथम 5 सम संख्या <math>= 0,2,4,6,8</math>
प्रथम 5 सम संख्या <math>= 0,2,4,6,8</math>
Line 55: Line 55:
यदि 10 अवलोकनों  <math>6, 12, 14, 15, x, 9, 11, 6, 2, 8</math>  का समांतर माध्य <math>17</math> है, लुप्त अवलोकन ज्ञात कीजिए ।  
यदि 10 अवलोकनों  <math>6, 12, 14, 15, x, 9, 11, 6, 2, 8</math>  का समांतर माध्य <math>17</math> है, लुप्त अवलोकन ज्ञात कीजिए ।  


हल  
'''हल'''


दिए गए, 10 अवलोकन हैं  <math>6, 12, 14, 15, x, 9, 11, 6, 2, 8</math>  
दिए गए, 10 अवलोकन हैं  <math>6, 12, 14, 15, x, 9, 11, 6, 2, 8</math>  
Line 78: Line 78:


# <math>14</math> संख्याओं का समांतर माध्य <math>7</math> है। यदि प्रत्येक संख्या में <math>5</math> जोड़ दिया जाए तो नया समांतर माध्य क्या होगा ?
# <math>14</math> संख्याओं का समांतर माध्य <math>7</math> है। यदि प्रत्येक संख्या में <math>5</math> जोड़ दिया जाए तो नया समांतर माध्य क्या होगा ?
# पहली पाँच संख्याओं का समांतर माध्य <math>28</math> है। जब एक संख्या हटा दी जाती है , तो माध्य <math>3</math> कम हो जाता है। वह संख्या बताइए जो शामिल नहीं है ?
# पहली पाँच संख्याओं का समांतर माध्य <math>28</math> है। जब एक संख्या हटा दी जाती है , तो माध्य <math>3</math> कम हो जाता है। वह संख्या बताइए जो सम्मिलित नहीं हैं ?


[[Category:गणित]][[Category:कक्षा-10]]
[[Category:गणित]][[Category:कक्षा-10]]

Revision as of 17:37, 18 September 2023

संख्याओं के समूह के औसत को समांतर माध्य कहा जाता है । समांतर माध्य एक संख्या का प्रतिनिधित्व करता है जो किसी आंकड़ों के समूह के तत्वों के योग को आंकड़ों के समूह में मानों की संख्या से विभाजित करके प्राप्त किया जाता है।

उदाहरण

यदि किसी परिवार में दो व्यक्ति हैं, जिनमें से पहले व्यक्ति की आय ₹ है तथा दूसरे व्यक्ति की आय ₹ है ,तो उनका औसत वेतनमान क्या होगा ?

इस औसत को ₹ और ₹ का समांतर माध्य भी कहा जाता है, जिसकी गणना इन दोनों वेतनों को जोड़कर और फिर 2 से विभाजित करके की जाती है।

औसत वेतन (वेतन का समांतर माध्य)

अतः हमें पता चला कि उस परिवार का औसत वेतनमान ₹ है । इस प्रकार, समांतर माध्य का उपयोग विभिन्न परिदृश्यों में किया जाता है, जैसे कि छात्रों द्वारा प्राप्त अंकों का औसत, किसी क्षेत्र में औसत वर्षा आदि ।

समांतर माध्य का सूत्र

माध्य = (अवलोकनों का योग)/(अवलोकनों की संख्या)

यदि आंकड़ों के समूह में अंक है ,तो इसका समांतर माध्य होगा ,

समांतर माध्य

यदि उन अंकों की बारंबारताएं क्रमशः है तो ,समांतर माध्य होगा ,

समांतर माध्य

समांतर माध्य के गुण

  1. यदि आंकड़ों के समूह में सभी मान समान हैं , तो आंकड़ों के समूह का समांतर माध्य आंकड़ों के समूह का व्यक्तिगत मान होगा ,अर्थात यदि अवलोकन के मान पदों तक हैं , तो समांतर माध्य होता है ।
  2. समांतर माध्य से अवलोकनों के एक समूह में सभी मानों के विचलन का योग शून्य होता है ।
  3. यदि हम आंकड़ों के समूह के सभी मानों को एक निश्चित मान से बढ़ाते या घटाते हैं, तो समांतर माध्य में उसी मान से वृद्धि या कमी होती है ।
  4. यदि हम आंकड़ों के समूह के सभी मानों को एक निश्चित मान से गुणा या भाग करते हैं, तो समांतर माध्य में उसी मान से गुणा या भाग होता है ।

उदाहरण 1

प्रथम सम संख्याओं का समांतर माध्य ज्ञात कीजिए ?

हल

प्रथम 5 सम संख्या

सूत्र , माध्य = (अवलोकनों का योग)/(अवलोकनों की संख्या)

अतः , प्रथम सम संख्याओं का समांतर माध्य है ।

उदाहरण 2

यदि 10 अवलोकनों का समांतर माध्य है, लुप्त अवलोकन ज्ञात कीजिए ।

हल

दिए गए, 10 अवलोकन हैं

समांतर माध्य

सूत्र , माध्य = अवलोकनों का योग/ अवलोकनों की कुल संख्या

अतः , लुप्त अवलोकन है ।

अभ्यास प्रश्न

  1. संख्याओं का समांतर माध्य है। यदि प्रत्येक संख्या में जोड़ दिया जाए तो नया समांतर माध्य क्या होगा ?
  2. पहली पाँच संख्याओं का समांतर माध्य है। जब एक संख्या हटा दी जाती है , तो माध्य कम हो जाता है। वह संख्या बताइए जो सम्मिलित नहीं हैं  ?