अभाज्य गुणनखण्डन विधि: Difference between revisions
Ramamurthy (talk | contribs) (formatting changes done) |
Ramamurthy (talk | contribs) |
||
Line 20: | Line 20: | ||
== हल किए गए उदाहरण == | == हल किए गए उदाहरण == | ||
=== | === उदाहरण 1: === | ||
यहां हमें <math>36</math> के अभाज्य गुणनखंड ज्ञात करने हैं। | यहां हमें <math>36</math> के अभाज्य गुणनखंड ज्ञात करने हैं। | ||
Line 43: | Line 43: | ||
इसलिए, <math>36</math> का अभाज्य गुणनखंडन <math>2*2*3*3</math> है। | इसलिए, <math>36</math> का अभाज्य गुणनखंडन <math>2*2*3*3</math> है। | ||
=== | === उदाहरण 2: === | ||
यहां हमें <math>40</math> के अभाज्य गुणनखंड ज्ञात करने हैं। | यहां हमें <math>40</math> के अभाज्य गुणनखंड ज्ञात करने हैं। | ||
Revision as of 17:59, 28 October 2023
अभाज्य गुणनखंडन किसी दी गई संख्या, जैसे भाज्य संख्या, के अभाज्य गुणनखंड ज्ञात करने की एक विधि है। ये गुणनखंड और कुछ नहीं बल्कि अभाज्य संख्याएँ हैं। अभाज्य संख्या वह संख्या होती है जिसके केवल दो गुणनखंड होते हैं, अर्थात 1 और स्वयं संख्या।
उदाहरण के लिए, 2 एक अभाज्य संख्या है जिसके दो गुणनखंड होते हैं, 2 × 1. जबकि एक भाज्य संख्या में दो से अधिक गुणनखंड मौजूद होते हैं। उदाहरण के लिए, 4 के तीन गुणनखंड हैं जैसे 1 × 2 × 2।
गुणनखंड और अभाज्य गुणनखंड क्या हैं?
गुणनखंड: वे संख्याएँ जिन्हें गुणा करने पर दूसरी संख्या प्राप्त होती है। उदाहरण के लिए, 4 और 6 24 के गुणनखंड हैं, यानी 4 × 6 = 24
अभाज्य गुणनखंड: एक गुणनखंड जो एक अभाज्य संख्या है और भाज्य संख्या नहीं है, एक अभाज्य गुणनखंड है। उदाहरण के लिए, 2, 3 और 5 30 के अभाज्य गुणनखंड हैं।
अभाज्य संख्याओं की सूची
1 से 100 तक अभाज्य कारकों की सूची -
अभाज्य गुणनखंड कैसे खोजें?
हम अभाज्य गुणनखंड विधि की सहायता से अभाज्य गुणनखंड ज्ञात कर सकते हैं। मान लीजिए कि हमें किसी दी गई संख्या का अभाज्य गुणनखंड ज्ञात करना है, तो हमें उस संख्या को सबसे छोटी अभाज्य संख्या से विभाजित करना होगा, कोई शेष नहीं बचेगा। प्राप्त भागफल को फिर से सबसे छोटी अभाज्य संख्या से विभाजित करें और चरणों को तब तक दोहराएँ जब तक कि भागफल 1 न हो जाए। आइए चरणों को बेहतर ढंग से समझने के लिए अभाज्य गुणनखंडन के आधार पर कुछ समस्याओं को हल करें।
हल किए गए उदाहरण
उदाहरण 1:
यहां हमें के अभाज्य गुणनखंड ज्ञात करने हैं।
को लघुत्तम समापवर्त्य अभाज्य संख्या से विभाजित करना।
पुनः को से विभाजित करें,
को से विभाजित करें;
को से विभाजित करें;
अब, हमें भागफल मिला है। इसलिए कोई और विभाजन संभव नहीं है।
इसलिए, का अभाज्य गुणनखंडन है।
उदाहरण 2:
यहां हमें के अभाज्य गुणनखंड ज्ञात करने हैं।
को लघुत्तम समापवर्त्य अभाज्य संख्या से विभाजित करना।
पुनः को से विभाजित करें,
पुनः को से विभाजित करें,
को से विभाजित करें;
अब, हमें भागफल मिला है। इसलिए कोई और विभाजन संभव नहीं है।
इसलिए, का अभाज्य गुणनखंडन है।