सम्मिश्र संख्याएँ: Difference between revisions

From Vidyalayawiki

(New Mathematics Class 11 Hindi Page Created)
No edit summary
Line 1: Line 1:
[[File:Complex numbers.jpg|thumb|[[सम्मिश्र संख्याएँ]]]]
सम्मिश्र संख्याएँ ऋणात्मक संख्याओं का वर्गमूल ज्ञात करने में सहायक होती हैं। जटिल संख्याओं की अवधारणा का उल्लेख पहली बार पहली शताब्दी में एक यूनानी गणितज्ञ, अलेक्जेंड्रिया के हीरो द्वारा किया गया था जब उन्होंने एक ऋणात्मक संख्या का वर्गमूल खोजने का प्रयास किया था। लेकिन उन्होंने केवल नकारात्मक को सकारात्मक में बदल दिया और केवल संख्यात्मक मूल मान लिया। इसके अलावा, एक जटिल संख्या की वास्तविक पहचान 16वीं शताब्दी में इतालवी गणितज्ञ गेरोलामो कार्डानो द्वारा घन और द्विघात बहुपद अभिव्यक्तियों की नकारात्मक जड़ों को खोजने की प्रक्रिया में परिभाषित की गई थी।
सम्मिश्र संख्याएँ ऋणात्मक संख्याओं का वर्गमूल ज्ञात करने में सहायक होती हैं। जटिल संख्याओं की अवधारणा का उल्लेख पहली बार पहली शताब्दी में एक यूनानी गणितज्ञ, अलेक्जेंड्रिया के हीरो द्वारा किया गया था जब उन्होंने एक ऋणात्मक संख्या का वर्गमूल खोजने का प्रयास किया था। लेकिन उन्होंने केवल नकारात्मक को सकारात्मक में बदल दिया और केवल संख्यात्मक मूल मान लिया। इसके अलावा, एक जटिल संख्या की वास्तविक पहचान 16वीं शताब्दी में इतालवी गणितज्ञ गेरोलामो कार्डानो द्वारा घन और द्विघात बहुपद अभिव्यक्तियों की नकारात्मक जड़ों को खोजने की प्रक्रिया में परिभाषित की गई थी।
[[Category:सम्मिश्र संख्याएँ और द्विघातीय समीकरण]][[Category:कक्षा-11]][[Category:गणित]]
[[Category:सम्मिश्र संख्याएँ और द्विघातीय समीकरण]][[Category:कक्षा-11]][[Category:गणित]]

Revision as of 19:59, 3 November 2023

सम्मिश्र संख्याएँ ऋणात्मक संख्याओं का वर्गमूल ज्ञात करने में सहायक होती हैं। जटिल संख्याओं की अवधारणा का उल्लेख पहली बार पहली शताब्दी में एक यूनानी गणितज्ञ, अलेक्जेंड्रिया के हीरो द्वारा किया गया था जब उन्होंने एक ऋणात्मक संख्या का वर्गमूल खोजने का प्रयास किया था। लेकिन उन्होंने केवल नकारात्मक को सकारात्मक में बदल दिया और केवल संख्यात्मक मूल मान लिया। इसके अलावा, एक जटिल संख्या की वास्तविक पहचान 16वीं शताब्दी में इतालवी गणितज्ञ गेरोलामो कार्डानो द्वारा घन और द्विघात बहुपद अभिव्यक्तियों की नकारात्मक जड़ों को खोजने की प्रक्रिया में परिभाषित की गई थी।