व्युत्क्रमणीय आव्यूह: Difference between revisions
(content added) |
(content added) |
||
Line 8: | Line 8: | ||
<math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math> <math>B=\begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}</math><math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math> | <math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math> <math>B=\begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}</math><math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math> | ||
अब हम <math>A</math> के साथ <math>B</math> को गुणा करते हैं और एक तत्समक आव्यूह प्राप्त करते हैं: | |||
<math>AB=\begin{bmatrix} 1 \times 5 + 2 \times -2 & 1 \times -2+2 \times 1 \\ 2 \times 5 + 5 \times -2 & 2 \times -2+5 \times 1 \end{bmatrix}=\begin{bmatrix} 5-4 & -2+2 \\ 10 -10 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> | <math>AB=\begin{bmatrix} 1 \times 5 + 2 \times -2 & 1 \times -2+2 \times 1 \\ 2 \times 5 + 5 \times -2 & 2 \times -2+5 \times 1 \end{bmatrix}=\begin{bmatrix} 5-4 & -2+2 \\ 10 -10 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> | ||
इसी प्रकार, <math>B</math> को <math>A</math> से गुणा करने पर, हमें समान तत्समक आव्यूह प्राप्त होता है: | |||
<math>BA=\begin{bmatrix} 5 \times 1+ -2 \times 2 & 5\times 2+ -2 \times 5 \\ -2 \times 1 + 1 \times 2 & 2 \times -2+1 \times 5 \end{bmatrix}=\begin{bmatrix} 5-4 & 10-10 \\ -2+2 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> | <math>BA=\begin{bmatrix} 5 \times 1+ -2 \times 2 & 5\times 2+ -2 \times 5 \\ -2 \times 1 + 1 \times 2 & 2 \times -2+1 \times 5 \end{bmatrix}=\begin{bmatrix} 5-4 & 10-10 \\ -2+2 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> | ||
हम देख सकते हैं कि <math>AB=BA=I</math> | |||
अत: <math>A^{-1}=B</math> और <math>B</math> को <math>A</math> के व्युत्क्रम के रूप में जाना जाता है | |||
<math>B^{-1}=A</math> | <math>B^{-1}=A</math> और <math>A</math> को <math>B</math> का व्युत्क्रम भी कहा जा सकता है | ||
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]] | [[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]] |
Revision as of 09:23, 9 January 2024
रैखिक बीजगणित में, एक वर्ग आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि आव्यूह और उसके व्युत्क्रम का गुणनफल तत्समक आव्यूह है।
परिभाषा
आयाम के एक आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि और केवल तभी जब उसी आयाम का एक और आव्यूह उपस्थित हो, जैसे कि , जहां उसी क्रम का पहचान आव्यूह है। आव्यूह को आव्यूह के व्युत्क्रम के रूप में जाना जाता है। आव्यूह का व्युत्क्रम प्रतीकात्मक रूप से द्वारा दर्शाया जाता है। एक व्युत्क्रमणीय आव्यूह को अनव्युत्क्रमणीय(गैर-अव्युत्क्रमणीय) आव्यूह या अनपभ्रष्ट(गैर-डीजनरेटेड)आव्यूह के रूप में भी जाना जाता है।
उदाहरण के लिए, आव्यूह और नीचे दिए गए हैं:
अब हम के साथ को गुणा करते हैं और एक तत्समक आव्यूह प्राप्त करते हैं:
इसी प्रकार, को से गुणा करने पर, हमें समान तत्समक आव्यूह प्राप्त होता है:
हम देख सकते हैं कि
अत: और को के व्युत्क्रम के रूप में जाना जाता है
और को का व्युत्क्रम भी कहा जा सकता है