क्षैतिज पारस: Difference between revisions
Listen
Line 20: | Line 20: | ||
y = ऊर्ध्वाधर विस्थापन (जो शून्य के बराबर होता है जब गेंद धरा से टकराती है) | y = ऊर्ध्वाधर विस्थापन (जो शून्य के बराबर होता है जब गेंद धरा से टकराती है) | ||
v₀y = प्रारंभिक ऊर्ध्वाधर वेग (जो शून्य है क्योंकि गेंद को क्षैतिज रूप से लॉन्च किया गया है) | v₀y = प्रारंभिक ऊर्ध्वाधर वेग (जो शून्य है क्योंकि गेंद को क्षैतिज रूप से उछाला (लॉन्च किया) गया है) | ||
g = गुरुत्वाकर्षण के कारण त्वरण (लगभग 10 m/s²) | g = गुरुत्वाकर्षण के कारण त्वरण (लगभग 10 m/s²) |
Revision as of 15:03, 12 January 2024
Horizontal range
भौतिकी में, क्षैतिज पारस (सीमा) एक प्रक्षेप्य या किसी वस्तु द्वारा तय की गई क्षैतिज दूरी को संदर्भित करती है जिसे हवा में प्रक्षेपित किया जाता है। यह धरा पर वापस आने से पहले वस्तु द्वारा क्षैतिज दिशा में तय की गई दूरी है। क्षैतिज सीमा कई कारकों द्वारा निर्धारित की जाती है, जिसमें वस्तु का प्रारंभिक वेग, जिस कोण पर इसे लॉन्च किया गया है, और गुरुत्वाकर्षण के कारण त्वरण शामिल है।
उदाहरण से समझ
अवधारणा को बेहतर ढंग से समझने के लिए, एक उच्च शिला से क्षैतिज रूप की ओर फेंकी गई गेंद के उदाहरण पर विचार करने पर क्षैतिज दिशा में प्रारंभिक वेग को प्रायः स्थिर माना जाता है और इसे "v₀" (v-naught) द्वारा दर्शाया जाता है। जिस कोण पर गेंद को प्रक्षेपित किया जाता है वह 0 डिग्री है क्योंकि इसे क्षैतिज रूप से फेंका जाता है।
ध्यान देने योग्य बात
महत्वपूर्ण यह है कि वायु प्रतिरोध की अनुपस्थिति में, गेंद पर कार्य करने वाला एकमात्र बल गुरुत्वाकर्षण बल है। यह बल गेंद को लगभग 9.8 मीटर प्रति वर्ग सेकंड (m/s²) की दर से लंबवत नीचे की ओर त्वरित करने का कारण बनता है, जिसे सरलता के लिए अक्सर 10 m/s² तक गोल किया जाता है।
चूँकि क्षैतिज दिशा में कोई त्वरण नहीं है (कोई वायु प्रतिरोध नहीं मानते हुए), गेंद अपनी गति की अवधि तक, एक स्थिर क्षैतिज वेग बनाए रखती है। इसका तात्पर्य यह है कि प्रारंभिक वेग का क्षैतिज घटक, पूरे प्रक्षेपवक्र की अवधि में समान रहता है।
क्षैतिज सीमा की गणना
अब, क्षैतिज सीमा की गणना करने के लीए,गेंद को धरा तक पहुँचने में लगने वाले समय को ऊर्ध्वाधर गति पर विचार करके निर्धारित किया जा सकता है। ऊर्ध्वाधर विस्थापन के सूत्र का उपयोग करना, जो निम्न द्वारा दिया गया है:
y = v₀y * t - (1/2) * g * t²
जहाँ:
y = ऊर्ध्वाधर विस्थापन (जो शून्य के बराबर होता है जब गेंद धरा से टकराती है)
v₀y = प्रारंभिक ऊर्ध्वाधर वेग (जो शून्य है क्योंकि गेंद को क्षैतिज रूप से उछाला (लॉन्च किया) गया है)
g = गुरुत्वाकर्षण के कारण त्वरण (लगभग 10 m/s²)
t = समय
मूल्यों को प्रतिस्थापित करके और "t" के लिए हल करके, आप गेंद को धरा पर मारने में लगने वाले समय का पता लगा सकते हैं। एक बार जब आपके पास समय हो, तो आप सूत्र का उपयोग करके "R" द्वारा निरूपित क्षैतिज सीमा की गणना करने के लिए इसका उपयोग कर सकते हैं:
R = v₀x * t
जहाँ:
R = क्षैतिज सीमा
v₀x = प्रारंभिक क्षैतिज वेग (जो v₀ के बराबर है क्योंकि गेंद को क्षैतिज रूप से फेंका जाता है)
t = समय
मूल्यों को प्रतिस्थापित करके, आप क्षैतिज पारस की गणना कर सकते हैं। यह ध्यान रखना महत्वपूर्ण है कि जब गेंद को 45 डिग्री के कोण पर लॉन्च किया जाता है तो सीमा अधिकतम होगी, क्योंकि यह ऊर्ध्वाधर और क्षैतिज वेगों का अधिकतम संयोजन देता है।
संक्षेप में
यह स्पष्टीकरण कोई वायु प्रतिरोध नहीं मानता है, जो पूरी तरह यथार्थवादी नहीं है।हालांकि, यह क्षैतिज सीमा की अवधारणा को समझने के लिए एक अच्छा सन्निकटन प्रदान करता है।