|
|
Line 73: |
Line 73: |
| <math>\bigtriangleup= 3 -0 -3 =0 </math> | | <math>\bigtriangleup= 3 -0 -3 =0 </math> |
| === गुणन गुणधर्म === | | === गुणन गुणधर्म === |
| यदि किसी सारणिक की पंक्ति (या स्तंभ) के प्रत्येक अवयव को एक स्थिरांक k से गुणा किया जाता है, तो उसका मान k से गुणा हो जाता है | | यदि किसी सारणिक की पंक्ति (या स्तंभ) के प्रत्येक अवयव को एक स्थिरांक <math>k</math> से गुणा किया जाता है, तो उसका मान <math>k</math> से गुणा हो जाता है |
|
| |
|
| <math>\bigtriangleup= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> <math>\bigtriangleup_1= \begin{vmatrix} ka_1 & ka_2 & ka_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> | | <math>\bigtriangleup= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> <math>\bigtriangleup_1= \begin{vmatrix} ka_1 & ka_2 & ka_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> |
न्यूनतम गणना के साथ सारणिकों का मान ज्ञात करने के लिए सारणिकों के गुणों की आवश्यकता होती है। सारणिकों के गुण अवयवों, पंक्ति और स्तंभ संचालन पर आधारित होते हैं, और यह सारणिक का मान अति सुलभ विधि से ज्ञात करने में सहायता करता है।
सारणिकों के गुणधर्म
परस्पर परिवर्तन गुणधर्म
यदि किसी सारणिक की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाए तो उसका मान अपरिवर्तित रहता है।
पंक्तियों और स्तंभों के परस्पर परिवर्तन से पहले
पंक्तियों और स्तंभों के परस्पर परिवर्तन के बाद
सत्यापन
अत:
यदि आव्यूह की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाता है, तो आव्यूह का परिवर्त प्राप्त होता है और सारणिक मान और परिवर्त का सारणिक समान होते हैं।
चिन्ह गुणधर्म
यदि किन्हीं दो पंक्तियों या किन्हीं दो स्तंभों को परस्पर परिवर्तित कर दिया जाए तो सारणिक के मान का चिह्न बदल जाता है।
किन्हीं दो पंक्तियों के परस्पर परिवर्तन के बाद
सत्यापन
शून्य गुणधर्म
यदि किसी सारणिक की कोई भी दो पंक्तियाँ (या स्तंभ) समान हैं (सभी संबंधित अवयव समान हैं), तो सारणिक का मान शून्य है।
सत्यापन
गुणन गुणधर्म
यदि किसी सारणिक की पंक्ति (या स्तंभ) के प्रत्येक अवयव को एक स्थिरांक से गुणा किया जाता है, तो उसका मान से गुणा हो जाता है
सत्यापन
योग गुणधर्म
यदि किसी सारणिक की किसी पंक्ति या स्तंभ के कुछ या सभी अवयवों को दो (या अधिक) पदों के योग के रूप में व्यक्त किया जाता है, तो सारणिक को दो (या अधिक) सारणिकों के योग के रूप में व्यक्त किया जा सकता है।
सत्यापन
L.H.S =
=R.H.S
अपरिवर्तनीय गुणधर्म
त्रिकोणीय गुणधर्म