माध्यिका: Difference between revisions
(added content) |
(added content) |
||
Line 1: | Line 1: | ||
[[Category:सांख्यिकी]] | [[Category:सांख्यिकी]] | ||
माध्यिका किसी भी समूह के लिए मध्य मान का प्रतिनिधित्व करती है। मेडियन एक ही आँकड़ोंबिंदु के साथ बड़ी संख्या में आँकड़ोंबिंदुओं का प्रतिनिधित्व करने में मदद करता है। माध्यिका गणना करने का सबसे आसान सांख्यिकीय उपाय है। माध्यिका की गणना के लिए, आँकड़ोंको आरोही क्रम में व्यवस्थित करना होगा, और फिर सबसे मध्य आँकड़ोंबिंदु | माध्यिका किसी भी समूह के लिए मध्य मान का प्रतिनिधित्व करती है। मेडियन एक ही आँकड़ोंबिंदु के साथ बड़ी संख्या में आँकड़ोंबिंदुओं का प्रतिनिधित्व करने में मदद करता है। माध्यिका गणना करने का सबसे आसान सांख्यिकीय उपाय है। माध्यिका की गणना के लिए, आँकड़ोंको आरोही क्रम में व्यवस्थित करना होगा, और फिर सबसे मध्य आँकड़ोंबिंदु '''आँकड़ों के माध्यिका''' का प्रतिनिधित्व करता है। | ||
इसके अलावा, माध्यिका की गणना आँकड़ोंबिंदुओं की संख्या पर निर्भर करती है। विषम संख्या में आँकड़ोंके लिए, माध्य मध्यतम आँकड़ोंहै, और सम संख्या में | इसके अलावा, माध्यिका की गणना आँकड़ोंबिंदुओं की संख्या पर निर्भर करती है। विषम संख्या में आँकड़ोंके लिए, माध्य मध्यतम आँकड़ोंहै, और सम संख्या में आँकड़ों के लिए, माध्यिका दो मध्य मानों का औसत है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 14: | Line 14: | ||
<math>4,4,6,3,2</math> | <math>4,4,6,3,2</math> | ||
आँकड़ों के उपरोक्त सेट के लिए माध्यिका ज्ञात कीजिए। | |||
* प्रक्रिया 1: दिए गए आंकड़ों को आरोही क्रम में व्यवस्थित करें: 2, 3, 4, 4, 6। | * प्रक्रिया 1: दिए गए आंकड़ों को आरोही क्रम में व्यवस्थित करें: 2, 3, 4, 4, 6। | ||
Line 22: | Line 22: | ||
== माध्यिका सूत्र == | == माध्यिका सूत्र == | ||
माध्यिका सूत्र का उपयोग करके, संख्याओं के व्यवस्थित सेट के मध्य मान की गणना की जा सकती है। केन्द्रीय प्रवृत्ति का यह माप ज्ञात करने के लिए समूह के घटकों को बढ़ते क्रम में लिखना आवश्यक है। माध्यिका सूत्र प्रेक्षणों की संख्या और चाहे वे विषम हों या सम, के आधार पर भिन्न-भिन्न होते हैं। निम्नलिखित सूत्रों का समुच्चय दिए गए आँकड़ों की माध्यिका ज्ञात करने में मदद करेगा। | माध्यिका सूत्र का उपयोग करके, संख्याओं के व्यवस्थित सेट के मध्य मान की गणना की जा सकती है। केन्द्रीय प्रवृत्ति का यह माप ज्ञात करने के लिए समूह के घटकों को बढ़ते क्रम में लिखना आवश्यक है। माध्यिका सूत्र प्रेक्षणों की संख्या और चाहे वे विषम हों या सम, के आधार पर भिन्न-भिन्न होते हैं। निम्नलिखित सूत्रों का समुच्चय दिए गए आँकड़ों की माध्यिका ज्ञात करने में मदद करेगा। | ||
== अवर्गीकृत आँकड़ों के लिए माध्यिका सूत्र == | |||
अवर्गीकृत आँकड़ों के लिए माध्यिका सूत्र लागू करते समय निम्नलिखित प्रक्रियाएँ सहायक होते हैं। | |||
* प्रक्रिया 1: आँकड़ों को आरोही या अवरोही क्रम में व्यवस्थित करें। | |||
* प्रक्रिया 2: अवलोकनों की कुल संख्या की गणना करें '<math> n</math>' | |||
* प्रक्रिया 3: जांचें कि क्या प्रेक्षणों की संख्या '<math> n</math><nowiki>''</nowiki> सम या विषम है। | |||
[[Category:गणित]][[Category:कक्षा-10]] | [[Category:गणित]][[Category:कक्षा-10]] |
Revision as of 17:38, 11 March 2024
माध्यिका किसी भी समूह के लिए मध्य मान का प्रतिनिधित्व करती है। मेडियन एक ही आँकड़ोंबिंदु के साथ बड़ी संख्या में आँकड़ोंबिंदुओं का प्रतिनिधित्व करने में मदद करता है। माध्यिका गणना करने का सबसे आसान सांख्यिकीय उपाय है। माध्यिका की गणना के लिए, आँकड़ोंको आरोही क्रम में व्यवस्थित करना होगा, और फिर सबसे मध्य आँकड़ोंबिंदु आँकड़ों के माध्यिका का प्रतिनिधित्व करता है।
इसके अलावा, माध्यिका की गणना आँकड़ोंबिंदुओं की संख्या पर निर्भर करती है। विषम संख्या में आँकड़ोंके लिए, माध्य मध्यतम आँकड़ोंहै, और सम संख्या में आँकड़ों के लिए, माध्यिका दो मध्य मानों का औसत है।
परिभाषा
माध्यिका केंद्रीय प्रवृत्ति के तीन मापों में से एक है। आँकड़ोंके एक सेट का वर्णन करते समय, आँकड़ोंसेट की केंद्रीय स्थिति की पहचान की जाती है। इसे केन्द्रीय प्रवृत्ति का माप कहा जाता है। केंद्रीय प्रवृत्ति के तीन सबसे सामान्य माप माध्य, माध्यिका और बहुलक हैं।
माध्यिका परिभाषा
आँकड़ों को आरोही क्रम में व्यवस्थित करने के बाद प्राप्त मध्यतम अवलोकन के मान को आँकड़ों का माध्यिका कहा जाता है। कई उदाहरणों में, प्रतिनिधित्व के लिए संपूर्ण आँकड़ोंपर विचार करना कठिन होता है, और यहां माध्यिका उपयोगी है। सांख्यिकीय सारांश दूरीक(मीट्रिक) के बीच, माध्यिका गणना करने के लिए एक आसान दूरीक है।
उदाहरण
आँकड़ों के उपरोक्त सेट के लिए माध्यिका ज्ञात कीजिए।
- प्रक्रिया 1: दिए गए आंकड़ों को आरोही क्रम में व्यवस्थित करें: 2, 3, 4, 4, 6।
- प्रक्रिया 2: मानों की संख्या गिनें। 5 मान हैं.
- प्रक्रिया 3: मध्य मान की तलाश करें। मध्य मान माध्यिका है। अत: माध्यिका = 4.
माध्यिका सूत्र
माध्यिका सूत्र का उपयोग करके, संख्याओं के व्यवस्थित सेट के मध्य मान की गणना की जा सकती है। केन्द्रीय प्रवृत्ति का यह माप ज्ञात करने के लिए समूह के घटकों को बढ़ते क्रम में लिखना आवश्यक है। माध्यिका सूत्र प्रेक्षणों की संख्या और चाहे वे विषम हों या सम, के आधार पर भिन्न-भिन्न होते हैं। निम्नलिखित सूत्रों का समुच्चय दिए गए आँकड़ों की माध्यिका ज्ञात करने में मदद करेगा।
अवर्गीकृत आँकड़ों के लिए माध्यिका सूत्र
अवर्गीकृत आँकड़ों के लिए माध्यिका सूत्र लागू करते समय निम्नलिखित प्रक्रियाएँ सहायक होते हैं।
- प्रक्रिया 1: आँकड़ों को आरोही या अवरोही क्रम में व्यवस्थित करें।
- प्रक्रिया 2: अवलोकनों की कुल संख्या की गणना करें ''
- प्रक्रिया 3: जांचें कि क्या प्रेक्षणों की संख्या ''' सम या विषम है।