शेषफल प्रमेय: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:
The Remainder theorem formula is used to find the remainder when a polynomial is divided by a linear polynomial.
== Remainder Theorem ==
The Remainder theorem states that "when a polynomial <math>p(x)</math>is divided by a linear polynomial <math>(x-a)</math> , then the remainder is <math>p(a)</math>"
== Example ==
Find the remainder when the polynomial <math>p(x)=3x^3+x^2+2x+5</math> is divided by <math>x+1</math>.
{| class="wikitable"
|+
|
| colspan="7" style="border-bottom: solid 5px blue" |<math>3x^2 -2x+4</math>
|-
| rowspan="7" style="border-right: solid 5px blue ;vertical-align:top" |'''<math>x+1</math>'''
|<math>3x^3</math>
|<math>+</math>
|<math>x^2</math>
|<math>+</math>
|<math>2x</math>
|<math>+</math>
|<math>5</math>
|-
|<math>3x^3</math>
|<math>+</math>
|<math>3x^2</math>
| colspan="4" |
|-
| rowspan="5" |
|<math>-</math>
|<math>2x^2</math>
|<math>+</math>
|<math>2x</math>
|<math>+</math>
|<math>5</math>
|-
|<math>-</math>
|<math>2x^2</math>
|<math>-</math>
|<math>2x</math>
| colspan="2" |
|-
| rowspan="3" |
| rowspan="3" |
|<math>+</math>
|<math>4x</math>
|<math>+</math>
|<math>5</math>
|-
|<math>+</math>
|<math>4x</math>
|<math>+</math>
|<math>4</math>
|-
| colspan="3" |
|'''1'''
|}
Here, quotient = <math>3x^2 -2x+4</math>
Remainder = <math>1</math>
'''Verification :'''
Given, the divisor is <math>x+1</math>, i.e. it is a factor of the given polynomial <math>p(x)</math>
Let <math>x+1=0</math>
<math>x=-1</math>
Substituting <math>x=-1</math> in <math>p(x)</math>,
<math>p(x)=3x^3+x^2+2x+5</math>
<math>p(-1-)=3(-1)^3+(-1)^2+2(-1)+5</math>
<math>p(-1-)=3(-1)+1-2+5</math>
<math>p(-1-)=-3+1-2+5</math>
<math>p(-1-)=1</math>
Remainder  = Value of <math>p(x)</math> at <math>x=-1</math>.
Hence proved the remainder theorem.


[[Category:बहुपद]][[Category:कक्षा-9]][[Category:गणित]]
[[Category:बहुपद]][[Category:कक्षा-9]][[Category:गणित]]
Remainder Theorem

Revision as of 19:12, 10 May 2024

The Remainder theorem formula is used to find the remainder when a polynomial is divided by a linear polynomial.

Remainder Theorem

The Remainder theorem states that "when a polynomial is divided by a linear polynomial , then the remainder is "

Example

Find the remainder when the polynomial is divided by .

1

Here, quotient =

Remainder =

Verification :

Given, the divisor is , i.e. it is a factor of the given polynomial

Let

Substituting in ,

Remainder  = Value of at .

Hence proved the remainder theorem.