शेषफल प्रमेय: Difference between revisions
From Vidyalayawiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The Remainder theorem formula is used to find the remainder when a polynomial is divided by a linear polynomial. | |||
== Remainder Theorem == | |||
The Remainder theorem states that "when a polynomial <math>p(x)</math>is divided by a linear polynomial <math>(x-a)</math> , then the remainder is <math>p(a)</math>" | |||
== Example == | |||
Find the remainder when the polynomial <math>p(x)=3x^3+x^2+2x+5</math> is divided by <math>x+1</math>. | |||
{| class="wikitable" | |||
|+ | |||
| | |||
| colspan="7" style="border-bottom: solid 5px blue" |<math>3x^2 -2x+4</math> | |||
|- | |||
| rowspan="7" style="border-right: solid 5px blue ;vertical-align:top" |'''<math>x+1</math>''' | |||
|<math>3x^3</math> | |||
|<math>+</math> | |||
|<math>x^2</math> | |||
|<math>+</math> | |||
|<math>2x</math> | |||
|<math>+</math> | |||
|<math>5</math> | |||
|- | |||
|<math>3x^3</math> | |||
|<math>+</math> | |||
|<math>3x^2</math> | |||
| colspan="4" | | |||
|- | |||
| rowspan="5" | | |||
|<math>-</math> | |||
|<math>2x^2</math> | |||
|<math>+</math> | |||
|<math>2x</math> | |||
|<math>+</math> | |||
|<math>5</math> | |||
|- | |||
|<math>-</math> | |||
|<math>2x^2</math> | |||
|<math>-</math> | |||
|<math>2x</math> | |||
| colspan="2" | | |||
|- | |||
| rowspan="3" | | |||
| rowspan="3" | | |||
|<math>+</math> | |||
|<math>4x</math> | |||
|<math>+</math> | |||
|<math>5</math> | |||
|- | |||
|<math>+</math> | |||
|<math>4x</math> | |||
|<math>+</math> | |||
|<math>4</math> | |||
|- | |||
| colspan="3" | | |||
|'''1''' | |||
|} | |||
Here, quotient = <math>3x^2 -2x+4</math> | |||
Remainder = <math>1</math> | |||
'''Verification :''' | |||
Given, the divisor is <math>x+1</math>, i.e. it is a factor of the given polynomial <math>p(x)</math> | |||
Let <math>x+1=0</math> | |||
<math>x=-1</math> | |||
Substituting <math>x=-1</math> in <math>p(x)</math>, | |||
<math>p(x)=3x^3+x^2+2x+5</math> | |||
<math>p(-1-)=3(-1)^3+(-1)^2+2(-1)+5</math> | |||
<math>p(-1-)=3(-1)+1-2+5</math> | |||
<math>p(-1-)=-3+1-2+5</math> | |||
<math>p(-1-)=1</math> | |||
Remainder = Value of <math>p(x)</math> at <math>x=-1</math>. | |||
Hence proved the remainder theorem. | |||
[[Category:बहुपद]][[Category:कक्षा-9]][[Category:गणित]] | [[Category:बहुपद]][[Category:कक्षा-9]][[Category:गणित]] | ||
Revision as of 19:12, 10 May 2024
The Remainder theorem formula is used to find the remainder when a polynomial is divided by a linear polynomial.
Remainder Theorem
The Remainder theorem states that "when a polynomial is divided by a linear polynomial , then the remainder is "
Example
Find the remainder when the polynomial is divided by .
1 |
Here, quotient =
Remainder =
Verification :
Given, the divisor is , i.e. it is a factor of the given polynomial
Let
Substituting in ,
Remainder = Value of at .
Hence proved the remainder theorem.