बायो सावर्ट नियम: Difference between revisions
Listen
Line 23: | Line 23: | ||
टेस्ला (<math>T</math>) है | टेस्ला (<math>T</math>) है । | ||
एक विभेदक तत्व <math>dl </math>और तत्व से दूरी <math>r </math> पर एक बिंदु के लिए बायोट-सावर्ट नियम का गणितीय रूप इस प्रकार दिया गया है: | एक विभेदक तत्व <math>dl </math>और तत्व से दूरी <math>r </math> पर एक बिंदु के लिए बायोट-सावर्ट नियम का गणितीय रूप इस प्रकार दिया गया है: |
Revision as of 08:01, 14 June 2024
Bio Savart Law
बायोट-सावर्ट नियम विद्युत चुंबकत्व में एक मौलिक सिद्धांत है जो एक स्थिर (स्थिर) धारा प्रवाहित करने वाले कंडक्टर द्वारा उत्पन्न चुंबकीय क्षेत्र की गणना करने में सुविधा करता है। इसका नाम फ्रांसीसी भौतिकविदों जीन-बैप्टिस्ट बायोट और फेलिक्स सावर्ट के नाम पर रखा गया है, जिन्होंने 19वीं शताब्दी के आरंभ में एक विद्युत,गतिमान आवेश और चुंबकत्व से संबंधित इस भौतिक क्रीया को नियमबद्ध किया था।
नियम की महत्वपूर्ण अवधारणाएं
चुंबकीय क्षेत्र
चुंबकीय क्षेत्र () एक चुंबक या करंट ले जाने वाले कंडक्टर के आसपास का क्षेत्र है, जहां चुंबकीय बलों का अनुभव होता है। यह एक अदृश्य "बल क्षेत्र" की तरह है जो चुंबकीय वस्तुओं को प्रभावित कर सकता है।
विद्युतीय प्रवाह (करंट)
विद्युत धारा ()किसी चालक, जैसे तार में विद्युत आवेशों (प्रायः इलेक्ट्रॉनों) का प्रवाह है। इसे एम्पीयर () में मापा जाता है।
लघु लम्बवत छड़ (लंबाई तत्व)
बायोट-सावर्ट नियम एक विशिष्ट बिंदु पर कुल चुंबकीय क्षेत्र में धारा प्रवाहित करने वाले कंडक्टर के प्रत्येक लघु खंड (जिसे लंबाई तत्व अथवा लघु लम्बवत छड़ के रूप में भी संबोधित कीया जा सकता है )() के कुल योगदान पर विचार करता है। लंबाई तत्व () को मीटर () में मापा जाता है।
बायोट-सावर्ट नियम
बायोट-सावर्ट नियम बताता है कि किसी मुक्ताकाश (जिसे अंतरिक्ष अथवा पृथ्वी पर एक ऐसे क्षेत्र जिसमें किसी प्रकार का आवेश विद्यमान न हो) में एक बिंदु पर एक लघु मात्रा के विद्युतीय प्रवाह को ले जाने वाले तत्व (लंबाई तत्व) के कारण चुंबकीय क्षेत्र () उस तत्व से गुजरने वाले विद्युतीय प्रवाह () के सीधे आनुपातिक है। चूंकि लम्बवत छड़ की लंबाई का कुल योग विद्युतीय प्रवाह करने में उपयोग में आने वाले विद्युत चालक का ज्यमतीय निरूपण हो सकता है, इस लिए इस नियम के गणितीय सूत्र में प्रतिनिधित्व के अनेक रूप हो सकते हैं। इस लेख में, उन अनेक रूप में से एक का विश्लेषण नीचे दीया गया है,
गणितीय प्रतिनिधित्व
बायोट-सावर्ट नियम का उपयोग तंतुमय प्रवाह ( फिलामेंटरी करंट) I (उदाहरण के लिए एक तार के लघुतम मूल्य के अल्पांश (तत्व) कारण) द्वारा मुक्ताकाश (उत्पन्न 3डी-स्पेस) में स्थिति पर परिणामी चुंबकीय प्रवाह घनत्व की गणना के लिए किया जाता है। चुंबकीय प्रवाह घनत्व के इस क्षेत्र में ,स्थिर (या अचल ) धारा आवेशों का एक निरंतर प्रवाह है,जो समय के साथ नहीं बदलता है और ऐसे क्षेत्र में आवेश किसी भी बिंदु पर न तो जमा होता है और न ही कम होता है। यह नियम एक रैखिक एकीकरण (लाइन इंटीग्रल) का एक भौतिक उदाहरण है, जिसका मूल्यांकन पथ पर किया जाता है जिसमें विद्युत धाराएँ प्रवाहित होती हैं (उदाहरण के लिए तार)। चुंबकीय प्रवाह घनत्व की एसआई () इकाइयों में समीकरण
टेस्ला () है ।
एक विभेदक तत्व और तत्व से दूरी पर एक बिंदु के लिए बायोट-सावर्ट नियम का गणितीय रूप इस प्रकार दिया गया है:
जहाँ:
विभेदक तत्व के कारण बिंदु पर चुंबकीय क्षेत्र वेक्टर है।
(उच्चारण म्यू-नॉट) मुक्त स्थान की पारगम्यता है, एक स्थिर मान () जो चुंबकीय क्षेत्र और धारा से संबंधित है।
लंबाई तत्व के माध्यम से बहने वाली धारा है।
तत्व से उस बिंदु तक इंगित करने वाला वेक्टर है जहां चुंबकीय क्षेत्र को मापा जा रहा है।
×dℓऔर r के बीच क्रॉस उत्पाद का प्रतिनिधित्व करता है।
बायोट-सावर्ट नियम का अनुप्रयोग
बायोट-सावर्ट नियम विभिन्न धारा-वाहक ज्यामिति, जैसे सीधे तार, लूप और सोलनॉइड के आसपास चुंबकीय क्षेत्र की गणना के लिए महत्वपूर्ण है। कंडक्टर के साथ सभी वर्तमान-वाहक तत्वों के योगदान को एकीकृत करके, हम अंतरिक्ष में किसी भी बिंदु पर कुल चुंबकीय क्षेत्र निर्धारित कर सकते हैं।
कंडक्टर के साथ सभी वर्तमान-वाहक तत्वों के योगदान को एकीकृत करके, अंतरिक्ष में किसी भी बिंदु पर कुल चुंबकीय क्षेत्र निर्धारित कर सकते हैं।
नियम विद्युत चुम्बकों, ट्रांसफार्मरों, विद्युत मोटरों और कई अन्य उपकरणों को समझने और अभिकल्पित (डिजाइन) करने में महत्वपूर्ण भूमिका निभाता है जो विद्युत धाराओं द्वारा निर्मित चुंबकीय क्षेत्र पर निर्भर होते हैं।
संक्षेप में
हालाँकि बायोट-सावर्ट नियम पहली बार में जटिल लग सकता है, यह विद्युत चुंबकत्व में अधिक उन्नत विषयों की नींव बनाता है और बहुत मूल्यवान भी है।