समविभव पृष्ठ: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:
Equipotential surface
Equipotential surface


भौतिकी में, एक समविभव या समविभव मुक्ताकाश (अंतरिक्ष) में एक ऐसे क्षेत्र को संदर्भित करता है,जहां प्रत्येक बिंदु समान विद्युतीय विभव  पर होता है। प्रायः यह एक अदिश विद्युतीय विभव  को संदर्भित करता है (उस स्थिति में यह विद्युतीय विभव का एक स्तर समुच्चय (सेट) है), हालांकि इसे सादिश विद्युतीय विभव पर भी संदर्भित किया जा सकता है। प्रायः एक एन-विमीय (एन -डायमेंशनल स्पेस,n-dimensional space) में ,एक अदिश विभव फलन का एक समविभव, एक (एन - 1) विमीय ((एन - 1)-डायमेंशनल स्पेस) होता है। डेल ऑपरेटर एक वेक्टर फ़ील्ड और उससे संबंधित अदिश संभावित क्षेत्र के बीच संबंध को दर्शाता है। एक समविभव क्षेत्र को 'समविभव' के रूप में संदर्भित किया जा सकता है या बस इसे 'समविभव' कहा जा सकता है
भौतिकी में, एक समविभव या समविभव मुक्ताकाश (अंतरिक्ष) में एक ऐसे क्षेत्र को संदर्भित करता है,जहां प्रत्येक बिंदु समान विद्युतीय विभव  पर होता है। प्रायः यह एक अदिश विद्युतीय विभव  को संदर्भित करता है (उस स्थिति में यह विद्युतीय विभव का एक स्तर समुच्चय (सेट) है), हालांकि इसे सादिश विद्युतीय विभव पर भी संदर्भित किया जा सकता है। प्रायः एक एन-विमीय (एन -डायमेंशनल स्पेस,n-dimensional space) में ,एक अदिश विभव फलन का एक समविभव, एक (एन - 1) विमीय ((एन - 1)-डायमेंशनल स्पेस) होता है। डेल ऑपरेटर, एक सादिश क्षेत्र (वेक्टर फ़ील्ड) और उससे संबंधित अदिश विभव क्षेत्र के बीच संबंध को दर्शाता है। एक समविभव क्षेत्र को 'समविभव' के रूप में संदर्भित किया जा सकता है या इसे 'समविभव'मात्र कहा जा सकता है।


समविभव पृष्ठ वह पृष्ठ होती है जहां पृष्ठ पर स्थित सभी बिंदुओं की विद्युत विद्युतीय विभव  समान होती है। इसका मतलब यह है कि किसी आवेश की समविभव पृष्ठ पर प्रत्येक बिंदु पर समान स्थितिज ऊर्जा होगी।
त्रि-आयामी मुक्ताकाश में, एक अदिश विभव का एक समविभव क्षेत्र, प्रायः एक समविभव (या समविभव समपृष्ट ) होता है, परंतु यह मुक्ताकाश में एक त्रि-आयामी गणितीय ठोस भी हो सकता है। अदिश विभव की प्रवणता (और इसलिए यह इसके विपरीत भी है, जैसा कि संबंधित  क्षेत्र के साथ एक वेक्टर क्षेत्र के मामले में) हर जगह समविभव सतह के लंबवत है, और त्रि-आयामी समविभव क्षेत्र के अंदर शून्य है।
 
समविभव पृष्ठ, वह पृष्ठ होती है जहां पृष्ठ पर स्थित सभी बिंदुओं की विद्युत विद्युतीय विभव  समान होती है। इसका मतलब यह है कि किसी आवेश की समविभव पृष्ठ पर प्रत्येक बिंदु पर समान स्थितिज ऊर्जा होगी।


विद्युत क्षेत्रों को कल्पित (देखने/परखने) के लिए समविभव पृष्ठें उपयोगी होती हैं। विद्युत क्षेत्र रेखाएं हमेशा उच्च विद्युतीय विभव  से निम्न विद्युतीय विभव  की ओर इंगित करती हैं, इसलिए वे समविभव पृष्ठों के लंबवत होती हैं।इसका मतलब यह है कि विद्युत क्षेत्र रेखाएं जितनी करीब होंगी, विद्युत क्षेत्र उतना ही मजबूत होगा।
विद्युत क्षेत्रों को कल्पित (देखने/परखने) के लिए समविभव पृष्ठें उपयोगी होती हैं। विद्युत क्षेत्र रेखाएं हमेशा उच्च विद्युतीय विभव  से निम्न विद्युतीय विभव  की ओर इंगित करती हैं, इसलिए वे समविभव पृष्ठों के लंबवत होती हैं।इसका मतलब यह है कि विद्युत क्षेत्र रेखाएं जितनी करीब होंगी, विद्युत क्षेत्र उतना ही मजबूत होगा।

Revision as of 18:32, 17 June 2024

Equipotential surface

भौतिकी में, एक समविभव या समविभव मुक्ताकाश (अंतरिक्ष) में एक ऐसे क्षेत्र को संदर्भित करता है,जहां प्रत्येक बिंदु समान विद्युतीय विभव पर होता है। प्रायः यह एक अदिश विद्युतीय विभव को संदर्भित करता है (उस स्थिति में यह विद्युतीय विभव का एक स्तर समुच्चय (सेट) है), हालांकि इसे सादिश विद्युतीय विभव पर भी संदर्भित किया जा सकता है। प्रायः एक एन-विमीय (एन -डायमेंशनल स्पेस,n-dimensional space) में ,एक अदिश विभव फलन का एक समविभव, एक (एन - 1) विमीय ((एन - 1)-डायमेंशनल स्पेस) होता है। डेल ऑपरेटर, एक सादिश क्षेत्र (वेक्टर फ़ील्ड) और उससे संबंधित अदिश विभव क्षेत्र के बीच संबंध को दर्शाता है। एक समविभव क्षेत्र को 'समविभव' के रूप में संदर्भित किया जा सकता है या इसे 'समविभव'मात्र कहा जा सकता है।

त्रि-आयामी मुक्ताकाश में, एक अदिश विभव का एक समविभव क्षेत्र, प्रायः एक समविभव (या समविभव समपृष्ट ) होता है, परंतु यह मुक्ताकाश में एक त्रि-आयामी गणितीय ठोस भी हो सकता है। अदिश विभव की प्रवणता (और इसलिए यह इसके विपरीत भी है, जैसा कि संबंधित क्षेत्र के साथ एक वेक्टर क्षेत्र के मामले में) हर जगह समविभव सतह के लंबवत है, और त्रि-आयामी समविभव क्षेत्र के अंदर शून्य है।

समविभव पृष्ठ, वह पृष्ठ होती है जहां पृष्ठ पर स्थित सभी बिंदुओं की विद्युत विद्युतीय विभव समान होती है। इसका मतलब यह है कि किसी आवेश की समविभव पृष्ठ पर प्रत्येक बिंदु पर समान स्थितिज ऊर्जा होगी।

विद्युत क्षेत्रों को कल्पित (देखने/परखने) के लिए समविभव पृष्ठें उपयोगी होती हैं। विद्युत क्षेत्र रेखाएं हमेशा उच्च विद्युतीय विभव से निम्न विद्युतीय विभव की ओर इंगित करती हैं, इसलिए वे समविभव पृष्ठों के लंबवत होती हैं।इसका मतलब यह है कि विद्युत क्षेत्र रेखाएं जितनी करीब होंगी, विद्युत क्षेत्र उतना ही मजबूत होगा।

  • यहां समविभव पृष्ठों के कुछ उदाहरण दिए गए हैं:
  • आवेशित चालक की पृष्ठ एक समविभव पृष्ठ होती है।
  • समानांतर प्लेट संधारित्र की प्लेटों के बीच का स्थान एक समविभव पृष्ठ है।
  • आवेशित गोले की पृष्ठ एक समविभव पृष्ठ होती है।

यहां समविभव पृष्ठों के कुछ अतिरिक्त गुण दिए गए हैं:

  • दो समविभव पृष्ठें कभी भी प्रतिच्छेद नहीं कर सकतीं।
  • एक ही समविभव पृष्ठ पर दो बिंदुओं के बीच चार्ज को स्थानांतरित करने में किया गया कार्य शून्य है।
  • विद्युत क्षेत्र हमेशा समविभव पृष्ठों के लंबवत होता है।

विद्युत क्षेत्रों को देखने और विद्युतीय विभव और विद्युत क्षेत्र के बीच संबंध को समझने के लिए समविभव पृष्ठें एक उपयोगी उपकरण हैं।