समविभव पृष्ठ: Difference between revisions

From Vidyalayawiki

Listen

Line 21: Line 21:
* विद्युत क्षेत्र हमेशा समविभव पृष्ठों के लंबवत होता है।
* विद्युत क्षेत्र हमेशा समविभव पृष्ठों के लंबवत होता है।


विद्युत क्षेत्रों को देखने और विद्युतीय विभव  और विद्युत क्षेत्र के बीच संबंध को समझने के लिए समविभव पृष्ठें एक उपयोगी उपकरण हैं।
== संक्षेप में ==
विद्युत क्षेत्रों को देखने और विद्युतीय विभव  और विद्युत क्षेत्र के बीच संबंध को समझने के लिए समविभव पृष्ठें एक उपयोगी उपकरण की तरह कार्य करते हैं।




[[Category:स्थिर्वैद्युत विभव तथा धारिता]]
[[Category:स्थिर्वैद्युत विभव तथा धारिता]]
[[Category:भौतिक विज्ञान]][[Category:कक्षा-12]]
[[Category:भौतिक विज्ञान]][[Category:कक्षा-12]]

Revision as of 19:04, 17 June 2024

Equipotential surface

भौतिकी में, एक समविभव या समविभव मुक्ताकाश (अंतरिक्ष) में एक ऐसे क्षेत्र को संदर्भित करता है,जहां प्रत्येक बिंदु समान विद्युतीय विभव पर होता है। प्रायः यह एक अदिश विद्युतीय विभव को संदर्भित करता है (उस स्थिति में यह विद्युतीय विभव का एक स्तर समुच्चय (सेट) है), हालांकि इसे सादिश विद्युतीय विभव पर भी संदर्भित किया जा सकता है। प्रायः एक एन-विमीय (एन -डायमेंशनल स्पेस,n-dimensional space) में ,एक अदिश विभव फलन का एक समविभव, एक (एन - 1) विमीय ((एन - 1)-डायमेंशनल स्पेस) होता है। डेल ऑपरेटर, एक सादिश क्षेत्र (वेक्टर फ़ील्ड) और उससे संबंधित अदिश विभव क्षेत्र के बीच संबंध को दर्शाता है। एक समविभव क्षेत्र को 'समविभव' के रूप में संदर्भित किया जा सकता है या इसे 'समविभव'मात्र कहा जा सकता है।

त्रि-आयामी मुक्ताकाश में : सिद्धांतिक रूप से

एक अदिश विभव का एक समविभव क्षेत्र, प्रायः एक समविभव (या समविभव समपृष्ट ) होता है, परंतु यह मुक्ताकाश में एक त्रि-आयामी गणितीय ठोस भी हो सकता है। अदिश विभव की प्रवणता (और इसलिए यह इसके विपरीत भी है, जैसा कि संबंधित विभव क्षेत्र के साथ,एक सादिश क्षेत्र के संदर्भ में),हर जगह समविभव पृष्ठ के लंबवत है, और त्रि-आयामी समविभव क्षेत्र के अंदर शून्य है।

व्यवहारिक रूप से

समविभव पृष्ठ, वह पृष्ठ होता है, जहां पृष्ठ पर स्थित सभी बिंदुओं की विद्युतीय विभव समान हो । इसका तात्पर्य यह है कि किसी आवेश के समविभव पृष्ठ पर प्रत्येक बिंदु पर स्थितिज ऊर्जा समान होगी।

विद्युत क्षेत्रों को कल्पित (देखने/परखने) करने के लिए समविभव पृष्ठें उपयोगी होती हैं। विद्युत क्षेत्र रेखाएं,सर्वथा उच्च विद्युतीय विभव से निम्न विद्युतीय विभव की ओर इंगित करती हैं, इसलिए वे समविभव पृष्ठों के लंबवत होती हैं।इसका तात्पर्य यह है कि विद्युत क्षेत्र रेखाएं जितनी समीप होंगी, विद्युत क्षेत्र उतना ही दृढ़ होगा।

समविभव पृष्ठों के कुछ उदाहरण

  • आवेशित चालक की पृष्ठ एक समविभव पृष्ठ होती है।
  • समानांतर पट्टिकाएं, संधारित्र की पट्टिकाओं के मध्य स्थान एक समविभव पृष्ठ होता है।
  • आवेशित गोले का पृष्ठ एक समविभव पृष्ठ होती है।

समविभव पृष्ठों के कुछ अतिरिक्त गुण

  • दो समविभव पृष्ठें कभी भी प्रतिच्छेद नहीं कर सकतीं।
  • एक ही समविभव पृष्ठ पर दो बिंदुओं के बीच चार्ज को स्थानांतरित करने में किया गया कार्य शून्य है।
  • विद्युत क्षेत्र हमेशा समविभव पृष्ठों के लंबवत होता है।

संक्षेप में

विद्युत क्षेत्रों को देखने और विद्युतीय विभव और विद्युत क्षेत्र के बीच संबंध को समझने के लिए समविभव पृष्ठें एक उपयोगी उपकरण की तरह कार्य करते हैं।