सत्यमान सारणी: Difference between revisions
Listen
Line 56: | Line 56: | ||
सत्यमान सारणीओं की बुनियादी अवधारणाओं के अलावा, कई और उन्नत अवधारणाएँ हैं जिन्हें समझना भौतिकी के 12वीं कक्षा के छात्रों के लिए महत्वपूर्ण है। इसमे शामिल है: | सत्यमान सारणीओं की बुनियादी अवधारणाओं के अलावा, कई और उन्नत अवधारणाएँ हैं जिन्हें समझना भौतिकी के 12वीं कक्षा के छात्रों के लिए महत्वपूर्ण है। इसमे शामिल है: | ||
===== | ===== डीमॉर्गन के प्रमेय ===== | ||
डीमॉर्गन के प्रमेय दो नियम हैं जो तर्क अभिव्यक्तियों के सरलीकरण की अनुमति देते हैं। | डीमॉर्गन के प्रमेय दो नियम हैं जो तर्क अभिव्यक्तियों के सरलीकरण की अनुमति देते हैं। | ||
===== | ===== कर्णघ मानचित्र ===== | ||
कर्णघ मानचित्र तर्क अभिव्यक्तियों को सरल बनाने के लिए एक ग्राफिकल विधि है। | कर्णघ मानचित्र तर्क अभिव्यक्तियों को सरल बनाने के लिए एक ग्राफिकल विधि है। | ||
===== | ===== राज्य मशीनें ===== | ||
राज्य मशीनें एक प्रकार का डिजिटल सर्किट हैं जो सूचनाओं को संग्रहीत और संसाधित कर सकती हैं। | राज्य मशीनें एक प्रकार का डिजिटल सर्किट हैं जो सूचनाओं को संग्रहीत और संसाधित कर सकती हैं। | ||
ये अवधारणाएँ अधिक उन्नत हैं, लेकिन जटिल डिजिटल सर्किट को समझने और डिजाइन करने के लिए ये आवश्यक हैं। | ये अवधारणाएँ अधिक उन्नत हैं, लेकिन जटिल डिजिटल सर्किट को समझने और डिजाइन करने के लिए ये आवश्यक हैं। | ||
[[Category:अर्धचालक इलेक्ट्रॉनिकी - पदार्थ युक्तियाँ तथा सरल परिपथ]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:अर्धचालक इलेक्ट्रॉनिकी - पदार्थ युक्तियाँ तथा सरल परिपथ]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Latest revision as of 17:36, 24 September 2024
Truth table
सत्यमान सारणी (जिसे अंग्रेजी में ट्रुथ टेबल और हिन्दी में सत्य तालिका के नाम से भी जाना जाता है) , एक तालिका है जो इनपुट के सभी संभावित संयोजनों के लिए लॉजिक गेट का आउटपुट दिखाती है। ट्रुथ टेबल का उपयोग डिजिटल सर्किट को डिजाइन और विश्लेषण करने के लिए किया जाता है।
उदाहरण
निम्न तालिका दो-इनपुट और गेट के लिए सत्यमान सारणी दिखाती है:
Input A | Input B | Output |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
सत्यमान सारणी से पता चलता है कि AND गेट का आउटपुट तभी उच्च होता है जब दोनों इनपुट उच्च होते हैं। अन्यथा, आउटपुट कम है.
गणितीय समीकरण
सत्यमान सारणीओं को गणितीय समीकरणों का उपयोग करके दर्शाया जा सकता है। उदाहरण के लिए, दो-इनपुट और गेट के लिए सत्यमान सारणी को निम्नलिखित समीकरण द्वारा दर्शाया जा सकता है:
Y= A⋅ B
जहाँ:
- Y AND गेट का आउटपुट है
- A और B AND गेट के इनपुट हैं
रेखांकन
सत्यमान सारणीओं को ग्राफ़ का उपयोग करके भी दर्शाया जा सकता है। उदाहरण के लिए, निम्नलिखित ग्राफ़ दो-इनपुट और गेट के लिए सत्यमान सारणी दिखाता है:
ग्राफ से पता चलता है कि AND गेट का आउटपुट तभी हाई होता है जब दोनों इनपुट हाई होते हैं। अन्यथा, आउटपुट कम है.
सत्य सारणी के अनुप्रयोग
सत्यमान सारणीओं का उपयोग विभिन्न प्रकार के अनुप्रयोगों में किया जाता है, जिनमें शामिल हैं:
- डिजिटल सर्किट डिजाइन करना
- डिजिटल सर्किट का विश्लेषण
- डिजिटल सर्किट का समस्या निवारण
- डिजिटल तर्क पढ़ाना
संक्षेप में
सत्यमान सारणी, डिजिटल सर्किट को समझने और डिजाइन करने के लिए एक शक्तिशाली उपकरण हैं। इनका उपयोग इंजीनियरों और छात्रों द्वारा समान रूप से किया जाता है।
सत्यमान सारणीओं की बुनियादी अवधारणाओं के अलावा, कई और उन्नत अवधारणाएँ हैं जिन्हें समझना भौतिकी के 12वीं कक्षा के छात्रों के लिए महत्वपूर्ण है। इसमे शामिल है:
डीमॉर्गन के प्रमेय
डीमॉर्गन के प्रमेय दो नियम हैं जो तर्क अभिव्यक्तियों के सरलीकरण की अनुमति देते हैं।
कर्णघ मानचित्र
कर्णघ मानचित्र तर्क अभिव्यक्तियों को सरल बनाने के लिए एक ग्राफिकल विधि है।
राज्य मशीनें
राज्य मशीनें एक प्रकार का डिजिटल सर्किट हैं जो सूचनाओं को संग्रहीत और संसाधित कर सकती हैं।
ये अवधारणाएँ अधिक उन्नत हैं, लेकिन जटिल डिजिटल सर्किट को समझने और डिजाइन करने के लिए ये आवश्यक हैं।