रेखा की ढाल: Difference between revisions

From Vidyalayawiki

(added content)
(added content)
Line 27: Line 27:
<math>P_2 = (x_2, y_2) </math>
<math>P_2 = (x_2, y_2) </math>


जैसा कि हमने पिछले अनुभागों में चर्चा की थी, ढलान "उस रेखा के <math>x</math>- निर्देशांक में परिवर्तन के संबंध में <math>y</math> निर्देशांक में परिवर्तन" है। इसलिए, ढलान के समीकरण में <math>\vartriangle y</math> और <math>\vartriangle x</math> के मान रखने पर, हम जानते हैं कि:
जैसा कि हमने पिछले अनुभागों में चर्चा की थी, ढलान "उस रेखा के <math>x</math>- निर्देशांक में परिवर्तन के संबंध में <math>y</math>- निर्देशांक में परिवर्तन" है। इसलिए, ढलान के समीकरण में <math>\vartriangle y</math> और <math>\vartriangle x</math> के मान रखने पर, हम जानते हैं कि:


<math>\vartriangle y=y_2 -y_1 </math>
<math>\vartriangle y=y_2 -y_1 </math>
Line 38: Line 38:


जहाँ <math>m </math> ढलान है, और <math>\theta </math> रेखा द्वारा धनात्मक <math>x</math>-अक्ष के साथ बनाया गया कोण है।
जहाँ <math>m </math> ढलान है, और <math>\theta </math> रेखा द्वारा धनात्मक <math>x</math>-अक्ष के साथ बनाया गया कोण है।
== रेखा की ढाल सूत्र ==
रेखा के समीकरण से रेखा की ढाल निकाली  जा सकती है। रेखा की ढाल का सामान्य सूत्र इस प्रकार दिया गया है,
<math>y = mx + b</math>
जहाँ,
<math>m </math> ढाल है, जैसे कि  <math>m=tan\theta =  \frac{\vartriangle y}{\vartriangle x} </math>
<math>\theta </math> रेखा द्वारा धनात्मक <math>x</math>-अक्ष से बनाया गया कोण है
<math>\vartriangle y</math>,  <math>y</math>-अक्ष में शुद्ध परिवर्तन है
<math>\vartriangle x</math>, <math>x</math>-अक्ष में शुद्ध परिवर्तन है
[[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]]
[[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]]

Revision as of 18:01, 19 November 2024

किसी रेखा का ढलान, रेखा की ढाल और दिशा का माप है। निर्देशांक तल में रेखाओं की ढाल ज्ञात करने से यह अनुमान लगाने में सहायता मिल सकती है कि रेखाएँ समानांतर हैं, लंबवत हैं या नहीं, बिना किसी कम्पास का उपयोग किए।

किसी भी रेखा की ढाल, रेखा पर स्थित किसी भी दो अलग-अलग बिंदुओं का उपयोग करके गणना की जा सकती है। रेखा की ढाल सूत्र एक रेखा पर दो अलग-अलग बिंदुओं के बीच "ऊर्ध्वाधर परिवर्तन" और "क्षैतिज परिवर्तन" के अनुपात की गणना करता है। इस लेख में, हम ढाल ज्ञात करने की विधि और उसके अनुप्रयोगों को समझेंगे।

परिभाषा

किसी रेखा की ढाल को उस रेखा के - निर्देशांक में परिवर्तन के संबंध में - निर्देशांक में परिवर्तन के रूप में परिभाषित किया जाता है। - निर्देशांक में शुद्ध परिवर्तन है, जबकि - निर्देशांक में शुद्ध परिवर्तन है। इसलिए - निर्देशांक में परिवर्तन के संबंध में - निर्देशांक में परिवर्तन को इस प्रकार लिखा जा सकता है,


image

जहाँ, ढलान है

ध्यान दें कि

हम इस को रेखा का ढलान भी मानते हैं।

रेखा की ढाल

रेखा की ढाल रन के लिए वृद्धि का अनुपात है, या रन द्वारा विभाजित वृद्धि है। यह निर्देशांक तल में रेखा की ढाल का वर्णन करता है। किसी रेखा के ढलान की गणना करना दो अलग-अलग बिंदुओं के बीच ढलान का पता लगाने के समान है। सामान्य तौर पर, किसी रेखा की ढाल ज्ञात करने के लिए, हमें रेखा पर किसी भी दो अलग-अलग निर्देशांक के मान की आवश्यकता होती है।

दो बिंदुओं के बीच ढलान

एक रेखा की ढाल की गणना एक सीधी रेखा पर स्थित दो बिंदुओं का उपयोग करके की जा सकती है। दो बिंदुओं के निर्देशांक दिए जाने पर, हम रेखा की ढाल के सूत्र को लागू कर सकते हैं। मान लें कि उन दो बिंदुओं के निर्देशांक हैं,

जैसा कि हमने पिछले अनुभागों में चर्चा की थी, ढलान "उस रेखा के - निर्देशांक में परिवर्तन के संबंध में - निर्देशांक में परिवर्तन" है। इसलिए, ढलान के समीकरण में और के मान रखने पर, हम जानते हैं कि:

इसलिए, इन मानों का अनुपात में उपयोग करने पर, हमें यह मिलता है:

ढाल

जहाँ ढलान है, और रेखा द्वारा धनात्मक -अक्ष के साथ बनाया गया कोण है।

रेखा की ढाल सूत्र

रेखा के समीकरण से रेखा की ढाल निकाली जा सकती है। रेखा की ढाल का सामान्य सूत्र इस प्रकार दिया गया है,

जहाँ,

ढाल है, जैसे कि

रेखा द्वारा धनात्मक -अक्ष से बनाया गया कोण है

, -अक्ष में शुद्ध परिवर्तन है

, -अक्ष में शुद्ध परिवर्तन है