सममित तथा विषम सममित आव्यूह: Difference between revisions

From Vidyalayawiki

(formulas)
(formulas)
Line 2: Line 2:
सममित आव्यूह, एक वर्ग आव्यूह है जो इसके परिवर्त(ट्रांसपोज़) आव्यूह के समान होता है। किसी भी दिए गए आव्यूह <math>A</math> का परिवर्त आव्यूह <math>A^T</math> के रूप में दिया जा सकता है। इसलिए, एक सममित आव्यूह <math>A, A = A^T</math> की शर्त को पूरा करता है। सभी विभिन्न प्रकार के मैट्रिसेस में से, सममित आव्यूह सबसे महत्वपूर्ण में से एक है जिसका उपयोग मशीन लर्निंग में व्यापक रूप से किया जाता है।
सममित आव्यूह, एक वर्ग आव्यूह है जो इसके परिवर्त(ट्रांसपोज़) आव्यूह के समान होता है। किसी भी दिए गए आव्यूह <math>A</math> का परिवर्त आव्यूह <math>A^T</math> के रूप में दिया जा सकता है। इसलिए, एक सममित आव्यूह <math>A, A = A^T</math> की शर्त को पूरा करता है। सभी विभिन्न प्रकार के मैट्रिसेस में से, सममित आव्यूह सबसे महत्वपूर्ण में से एक है जिसका उपयोग मशीन लर्निंग में व्यापक रूप से किया जाता है।


इस लेख में, आइए सममित आव्यूह , उनकी परिभाषाओं और हल किए गए उदाहरणों के साथ गुणों के बारे में जानें।
इस लेख में, आइए सममित आव्यूह , उनकी परिभाषाओं और हल किए गए उदाहरणों के साथ गुणधर्मों  के बारे में जानें।


== परिभाषा ==
== परिभाषा ==
Line 34: Line 34:
'''4 X 4 सममित आव्यूह उदाहरण:''' <math>B=\begin{bmatrix} 1 & 2 &-1&5  \\ 2&1 & 3&0 \\ -1&3&0&4 \\ 5&0&4&2 \end{bmatrix}</math>
'''4 X 4 सममित आव्यूह उदाहरण:''' <math>B=\begin{bmatrix} 1 & 2 &-1&5  \\ 2&1 & 3&0 \\ -1&3&0&4 \\ 5&0&4&2 \end{bmatrix}</math>
== सममित आव्यूह के गुणधर्म ==
== सममित आव्यूह के गुणधर्म ==
यहाँ सममित आव्यूह के कुछ महत्वपूर्ण गुण दिए गए हैं।
यहाँ सममित आव्यूह के कुछ महत्वपूर्ण गुणधर्म  दिए गए हैं।


दो सममित आव्यूह का योग और अंतर परिणामी को सममित आव्यूह के रूप में देता है।
* दो सममित आव्यूह का योग और अंतर परिणामी को सममित आव्यूह के रूप में देता है।
 
* ऊपर वर्णित गुणधर्म  सदैव गुणनफल के लिए सत्य नहीं होता है: सममित आव्यूह <math>A</math> और <math>B</math> दिए गए हैं, तो <math>AB</math> सममित है यदि और केवल यदि <math>A</math> और <math>B</math> गुणधर्म न के विनिमेय गुणधर्म  का पालन करते हैं, अर्थात, यदि <math>AB = BA</math> है।
ऊपर वर्णित गुण हमेशा उत्पाद के लिए सत्य नहीं होता है: सममित आव्यूह A और B दिए गए हैं, तो AB सममित है यदि और केवल यदि A और B गुणन के विनिमेय गुण का पालन करते हैं, अर्थात, यदि AB = BA है।
* [[पूर्णांक]] <math>n</math> के लिए, यदि <math>A</math> सममित है, तो <math>\Rightarrow A^n </math> सममित है।
 
* एक सममित आव्यूह के आइगेन मान(आइजेनवैल्यू) सदैव वास्तविक और सकारात्मक होते हैं।
पूर्णांक n के लिए, यदि A सममित है, तो ⇒ An सममित है।
* एक सममित आव्यूह के लिए आव्यूह का निर्धारक और उसका परिवर्त समान होता है।
 
* एक सममित आव्यूह का सहायक सममित होता है।
एक सममित आव्यूह के आइगेन मान हमेशा वास्तविक और सकारात्मक होते हैं।
* सममित आव्यूह का प्रतिलोम सममित होता है।
 
एक सममित आव्यूह के लिए आव्यूह का निर्धारक और उसका परिवर्त समान होता है।
 
एक सममित आव्यूह का सहायक सममित होता है।
 
सममित आव्यूह का व्युत्क्रम सममित होता है।


== सममित आव्यूह प्रमेय ==
== सममित आव्यूह प्रमेय ==
Line 105: Line 99:
गणित में, विषम  सममित आव्यूह को वर्ग आव्यूह के रूप में परिभाषित किया जाता है जो इसके परिवर्त आव्यूह के ऋणात्मक के बराबर होता है। किसी भी वर्ग मैट्रिक्स, A के लिए, परिवर्त आव्यूह AT के रूप में दिया जाता है। इसलिए एक तिरछा-सममित या एंटीसिमेट्रिक आव्यूह A को A = -AT के रूप में दर्शाया जा सकता है। तिरछा-सममित आव्यूह का उपयोग विभिन्न क्षेत्रों में किया जाता है, जैसे कि मशीन लर्निंग और सांख्यिकीय विश्लेषण में।
गणित में, विषम  सममित आव्यूह को वर्ग आव्यूह के रूप में परिभाषित किया जाता है जो इसके परिवर्त आव्यूह के ऋणात्मक के बराबर होता है। किसी भी वर्ग मैट्रिक्स, A के लिए, परिवर्त आव्यूह AT के रूप में दिया जाता है। इसलिए एक तिरछा-सममित या एंटीसिमेट्रिक आव्यूह A को A = -AT के रूप में दर्शाया जा सकता है। तिरछा-सममित आव्यूह का उपयोग विभिन्न क्षेत्रों में किया जाता है, जैसे कि मशीन लर्निंग और सांख्यिकीय विश्लेषण में।


आइए निम्नलिखित अनुभागों में हल किए गए उदाहरणों का उपयोग करके विषम  सममित मैट्रिक्स, उनकी परिभाषाओं और गुणों के बारे में जानें।
आइए निम्नलिखित अनुभागों में हल किए गए उदाहरणों का उपयोग करके विषम  सममित मैट्रिक्स, उनकी परिभाषाओं और गुणधर्म ों के बारे में जानें।


विषम  सममित आव्यूह क्या है?
विषम  सममित आव्यूह क्या है?
Line 170: Line 164:




== विषम  सममित आव्यूह के गुण ==
== विषम  सममित आव्यूह के गुणधर्म ==
किसी आव्यूह के विषम  सममित होने के लिए दो महत्वपूर्ण शर्तें हैं कि यह एक वर्ग आव्यूह होना चाहिए यानी पंक्तियों और स्तंभों की संख्या बराबर होनी चाहिए और दूसरी बात, दिया गया आव्यूह अपने परिवर्त के ऋणात्मक के बराबर होना चाहिए। यहाँ विषम  सममित आव्यूह के कुछ महत्वपूर्ण गुण दिए गए हैं,
किसी आव्यूह के विषम  सममित होने के लिए दो महत्वपूर्ण शर्तें हैं कि यह एक वर्ग आव्यूह होना चाहिए यानी पंक्तियों और स्तंभों की संख्या बराबर होनी चाहिए और दूसरी बात, दिया गया आव्यूह अपने परिवर्त के ऋणात्मक के बराबर होना चाहिए। यहाँ विषम  सममित आव्यूह के कुछ महत्वपूर्ण गुणधर्म  दिए गए हैं,


जब दो विषम  सममित आव्यूह जोड़े जाते हैं, तो परिणामी आव्यूह हमेशा एक विषम  सममित आव्यूह होगा। दो विषम  सममित आव्यूह A और B पर विचार करें जैसे कि AT = -A, और BT = -B, तो हमारे पास (A + B)T = -(A + B) है
जब दो विषम  सममित आव्यूह जोड़े जाते हैं, तो परिणामी आव्यूह हमेशा एक विषम  सममित आव्यूह होगा। दो विषम  सममित आव्यूह A और B पर विचार करें जैसे कि AT = -A, और BT = -B, तो हमारे पास (A + B)T = -(A + B) है
Line 179: Line 173:
एक वास्तविक विषम  सममित आव्यूह A का वास्तविक आइजेनवैल्यू, λ शून्य के बराबर है। इसका मतलब है कि विषम  सममित आव्यूह के शून्येतर आइजेनवैल्यू गैर-वास्तविक हैं।
एक वास्तविक विषम  सममित आव्यूह A का वास्तविक आइजेनवैल्यू, λ शून्य के बराबर है। इसका मतलब है कि विषम  सममित आव्यूह के शून्येतर आइजेनवैल्यू गैर-वास्तविक हैं।


जब किसी स्केलर या वास्तविक संख्या को तिरछा-सममित आव्यूह से गुणा किया जाता है, तो परिणामी आव्यूह भी तिरछा-सममित आव्यूह होगा। एक स्केलर मान k पर विचार करें, B एक तिरछा-सममित आव्यूह है, तो परिणामी आव्यूह भी एक विषम  सममित आव्यूह है। (kB)T = -kB.
जब किसी स्केलर या वास्तविक संख्या को तिरछा-सममित आव्यूह से गुणधर्म ा किया जाता है, तो परिणामी आव्यूह भी तिरछा-सममित आव्यूह होगा। एक स्केलर मान k पर विचार करें, B एक तिरछा-सममित आव्यूह है, तो परिणामी आव्यूह भी एक विषम  सममित आव्यूह है। (kB)T = -kB.


किसी भी वास्तविक विषम  सममित आव्यूह A के लिए, I + A आव्यूह व्युत्क्रमणीय होगा, जहाँ I एक पहचान आव्यूह है।
किसी भी वास्तविक विषम  सममित आव्यूह A के लिए, I + A आव्यूह व्युत्क्रमणीय होगा, जहाँ I एक पहचान आव्यूह है।

Revision as of 15:46, 28 November 2024

सममित आव्यूह

सममित आव्यूह, एक वर्ग आव्यूह है जो इसके परिवर्त(ट्रांसपोज़) आव्यूह के समान होता है। किसी भी दिए गए आव्यूह का परिवर्त आव्यूह के रूप में दिया जा सकता है। इसलिए, एक सममित आव्यूह की शर्त को पूरा करता है। सभी विभिन्न प्रकार के मैट्रिसेस में से, सममित आव्यूह सबसे महत्वपूर्ण में से एक है जिसका उपयोग मशीन लर्निंग में व्यापक रूप से किया जाता है।

इस लेख में, आइए सममित आव्यूह , उनकी परिभाषाओं और हल किए गए उदाहरणों के साथ गुणधर्मों के बारे में जानें।

परिभाषा

रैखिक बीजगणित में सममित आव्यूह एक वर्ग आव्यूह है जो तब अपरिवर्तित रहता है जब इसका परिवर्त की गणना की जाती है। इसका अर्थ है, एक आव्यूह जिसका परिवर्त आव्यूह के बराबर होता है, उसे सममित आव्यूह कहा जाता है। इसे गणितीय रूप से इस प्रकार परिभाषित किया गया है:

एक वर्ग आव्यूह जिसका आकार है, उसे सममित माना जाता है यदि और केवल यदि है। दिए गए आव्यूह पर विचार करें, अर्थात, एक वर्ग आव्यूह जो उस आव्यूह के परिवर्त रूप के बराबर है, जिसे सममित आव्यूह कहा जाता है।

इसे इस प्रकार दर्शाया जा सकता है: यदि सममित आव्यूह है, तो

सभी और के लिए या और । यहाँ,

  • कोई भी प्राकृतिक संख्या है।
  • स्थिति पर एक तत्व है जो आव्यूह में वीं पंक्ति और वां स्तंभ है, और
  • स्थिति पर एक तत्व है जो आव्यूह में वीं पंक्ति और वां स्तंभ है।

सममित आव्यूह उदाहरण

आइए आव्यूह का एक उदाहरण लेते हैं,

यहाँ, हम देख सकते हैं कि, । उदाहरण के लिए,और . इस प्रकार, B एक सममित आव्यूह है। नीचे विभिन्न क्रमों के सममित आव्यूह के कुछ और उदाहरण दिए गए हैं।

2 X 2 सममित आव्यूह उदाहरण:

3 X 3 सममित आव्यूह उदाहरण :

4 X 4 सममित आव्यूह उदाहरण:

सममित आव्यूह के गुणधर्म

यहाँ सममित आव्यूह के कुछ महत्वपूर्ण गुणधर्म दिए गए हैं।

  • दो सममित आव्यूह का योग और अंतर परिणामी को सममित आव्यूह के रूप में देता है।
  • ऊपर वर्णित गुणधर्म सदैव गुणनफल के लिए सत्य नहीं होता है: सममित आव्यूह और दिए गए हैं, तो सममित है यदि और केवल यदि और गुणधर्म न के विनिमेय गुणधर्म का पालन करते हैं, अर्थात, यदि है।
  • पूर्णांक के लिए, यदि सममित है, तो सममित है।
  • एक सममित आव्यूह के आइगेन मान(आइजेनवैल्यू) सदैव वास्तविक और सकारात्मक होते हैं।
  • एक सममित आव्यूह के लिए आव्यूह का निर्धारक और उसका परिवर्त समान होता है।
  • एक सममित आव्यूह का सहायक सममित होता है।
  • सममित आव्यूह का प्रतिलोम सममित होता है।

सममित आव्यूह प्रमेय

सममित आव्यूह से संबंधित दो महत्वपूर्ण प्रमेय हैं। इस अनुभाग में, आइए इन प्रमेयों के साथ-साथ उनके प्रमाणों के बारे में जानें।

प्रमेय 1: वास्तविक संख्या तत्वों वाले किसी भी वर्ग आव्यूह B के लिए, B + BT एक सममित आव्यूह है, और B - BT एक तिरछा-सममित आव्यूह है।

उपाय:

मान लें A = B + BT.

एक परिवर्त लेते हुए, AT = (B + BT)T = BT + (BT)T = BT + B = B + BT = A

इसका अर्थ है B + BT एक सममित आव्यूह है।

इसके बाद, मान लें C = B - BT

CT = (B + (- BT))T = BT + (- BT)T = BT - (BT)T = BT- B = - (B - BT) = - C

इसका अर्थ है B - BT एक तिरछा-सममित आव्यूह है।

प्रमेय 2: किसी भी वर्ग आव्यूह को तिरछा-सममित आव्यूह और सममित आव्यूह के योग के रूप में व्यक्त किया जा सकता है। सममित और तिरछा-सममित आव्यूह का योग ज्ञात करने के लिए, हम इस सूत्र का उपयोग करते हैं:

मान लें कि B एक वर्ग आव्यूह है। फिर,

B = (1/2) × (B + BT) + (1/2 ) × (B - BT)। यहाँ, BT वर्ग आव्यूह B का परिवर्त है।

यदि B + BT एक सममित आव्यूह है, तो (1/2) × (B + BT) भी एक सममित आव्यूह है

यदि B - BT एक तिरछा-सममित आव्यूह है, तो (1/2 ) × (B - BT) भी एक तिरछा-सममित आव्यूह है

इस प्रकार, किसी भी वर्ग आव्यूह को तिरछा-सममित आव्यूह और सममित आव्यूह के योग के रूप में व्यक्त किया जा सकता है।

Example: Express the following matrix as the sum of a symmetric and skew symmetric matrix:

B=⎡⎢⎣1−14213430⎤⎥⎦

Solution:

Since any matrix can be represented as a sum of a symmetric matrix and a skew symmetric matrix, we can therefore express matrix B as,

B = (1/2) × (B + BT) + (1/2 ) × (B - BT), where (1/2) × (B + BT) is a symmetric matrix and (1/2) × (B - BT) is a skew symmetric matrix.

⇒ (1/2) × (B + BT) = (1/2) ⎡⎢⎣1−14213430⎤⎥⎦ + ⎡⎢⎣124−113430⎤⎥⎦ = (1/2)⎡⎢⎣218126860⎤⎥⎦ = ⎡⎢ ⎢⎣11241213430⎤⎥ ⎥⎦

Similarly, (1/2) × (B -BT) = (1/2) ⎡⎢⎣1−14213430⎤⎥⎦ - ⎡⎢⎣124−113430⎤⎥⎦ = (1/2)⎡⎢⎣0−30300000⎤⎥⎦ = ⎡⎢ ⎢⎣0−3203200000⎤⎥ ⎥⎦

∴ Matrix B can be expressed as a sum of symmetric matrix and skew symmetric matrix as,

B=⎡⎢⎣1−14213430⎤⎥⎦ = ⎡⎢ ⎢⎣11241213430⎤⎥ ⎥⎦ + ⎡⎢ ⎢⎣0−3203200000⎤⎥ ⎥⎦

Here, ⎡⎢ ⎢⎣11241213430⎤⎥ ⎥⎦ is a symmetric matrix and ⎡⎢ ⎢⎣0−3203200000⎤⎥ ⎥⎦ is a skew symmetric matrix.


विषम सममित मैट्रिक्स

गणित में, विषम सममित आव्यूह को वर्ग आव्यूह के रूप में परिभाषित किया जाता है जो इसके परिवर्त आव्यूह के ऋणात्मक के बराबर होता है। किसी भी वर्ग मैट्रिक्स, A के लिए, परिवर्त आव्यूह AT के रूप में दिया जाता है। इसलिए एक तिरछा-सममित या एंटीसिमेट्रिक आव्यूह A को A = -AT के रूप में दर्शाया जा सकता है। तिरछा-सममित आव्यूह का उपयोग विभिन्न क्षेत्रों में किया जाता है, जैसे कि मशीन लर्निंग और सांख्यिकीय विश्लेषण में।

आइए निम्नलिखित अनुभागों में हल किए गए उदाहरणों का उपयोग करके विषम सममित मैट्रिक्स, उनकी परिभाषाओं और गुणधर्म ों के बारे में जानें।

विषम सममित आव्यूह क्या है?

विषम सममित आव्यूह एक वर्ग आव्यूह है जो इसके परिवर्त आव्यूह के ऋणात्मक के बराबर होता है। विषम सममित आव्यूह को बेहतर ढंग से समझने के लिए आव्यूह का परिवर्त खोजने की विधि जानना महत्वपूर्ण है। यहाँ, हमने एक आव्यूह A पर विचार किया है। विषम सममित आव्यूह का प्रतिनिधित्व करने वाला मूल सूत्र इस प्रकार है।

B = -BT


परिभाषा

एक वर्ग आव्यूह B जिसका आकार n × n है, उसे विषम सममित आव्यूह माना जाता है यदि और केवल यदि BT = -B है। यही है, एक विषम सममित या प्रतिसममित आव्यूह का ट्रांसपोज़्ड रूप जो उस आव्यूह के ऋणात्मक के बराबर है। इसे इस प्रकार दर्शाया जा सकता है:

यदि B =

[

b

i

j

]

n

×

n

विषम सममित आव्यूह है, तो

b

i

j

= -

b

j

i

सभी i और j के लिए या 1 ≤ i ≤ n, और 1 ≤ j ≤ n। यहाँ, n कोई भी प्राकृतिक संख्या है। यदि हम i = j रखते हैं, तो

b

i

i

= 0 सभी i के लिए। इसका मतलब है कि तिरछा-सममित आव्यूह में विकर्ण रूप से मौजूद सभी तत्व शून्य हैं।


विषम सममित आव्यूह उदाहरण:

आइए आव्यूह B का उदाहरण लेते हैं,


विषम सममित आव्यूह के गुणधर्म

किसी आव्यूह के विषम सममित होने के लिए दो महत्वपूर्ण शर्तें हैं कि यह एक वर्ग आव्यूह होना चाहिए यानी पंक्तियों और स्तंभों की संख्या बराबर होनी चाहिए और दूसरी बात, दिया गया आव्यूह अपने परिवर्त के ऋणात्मक के बराबर होना चाहिए। यहाँ विषम सममित आव्यूह के कुछ महत्वपूर्ण गुणधर्म दिए गए हैं,

जब दो विषम सममित आव्यूह जोड़े जाते हैं, तो परिणामी आव्यूह हमेशा एक विषम सममित आव्यूह होगा। दो विषम सममित आव्यूह A और B पर विचार करें जैसे कि AT = -A, और BT = -B, तो हमारे पास (A + B)T = -(A + B) है

विषम सममित आव्यूह का ट्रेस शून्य के बराबर होता है यानी मुख्य विकर्ण में सभी तत्वों का योग भी शून्य के बराबर होता है।

एक वास्तविक विषम सममित आव्यूह A का वास्तविक आइजेनवैल्यू, λ शून्य के बराबर है। इसका मतलब है कि विषम सममित आव्यूह के शून्येतर आइजेनवैल्यू गैर-वास्तविक हैं।

जब किसी स्केलर या वास्तविक संख्या को तिरछा-सममित आव्यूह से गुणधर्म ा किया जाता है, तो परिणामी आव्यूह भी तिरछा-सममित आव्यूह होगा। एक स्केलर मान k पर विचार करें, B एक तिरछा-सममित आव्यूह है, तो परिणामी आव्यूह भी एक विषम सममित आव्यूह है। (kB)T = -kB.

किसी भी वास्तविक विषम सममित आव्यूह A के लिए, I + A आव्यूह व्युत्क्रमणीय होगा, जहाँ I एक पहचान आव्यूह है।

किसी भी वास्तविक विषम सममित आव्यूह A के लिए, A2 एक सममित नकारात्मक अर्ध-निश्चित आव्यूह है।

विषम सममित आव्यूह से संबंधित प्रमेय

विषम सममित आव्यूह से संबंधित दो महत्वपूर्ण प्रमेय हैं। इस अनुभाग में, आइए इन प्रमेयों के साथ-साथ उनके प्रमाणों के बारे में जानें।

प्रमेय 1: वास्तविक संख्या तत्वों वाले किसी भी वर्ग आव्यूह A के लिए, A + AT एक सममित आव्यूह है, और A - AT एक विषम सममित आव्यूह है।

उपाय:

मान लें P = A + AT.

P का परिवर्त इस प्रकार दिया जा सकता है, PT = (A + AT)T = AT + (AT)T = AT + A = A + AT = P

⇒ A + AT एक सममित आव्यूह है।

इसके बाद, हम Q = A - AT

QT = (A + (-AT))T = AT + (-AT)T = AT - (AT)T = AT - A = -(A - AT) = -Q

⇒ A - AT एक विषम सममित आव्यूह है।

प्रमेय 2: किसी भी वर्ग आव्यूह A को सममित मैट्रिक्स, S और विषम सममित मैट्रिक्स, V के योग के रूप में व्यक्त किया जा सकता है, जैसे कि,

A = (1/2) × (A + AT) + (1/2 ) × (A - AT)। यहाँ, AT वर्ग आव्यूह A का परिवर्त है।

यदि A + AT एक सममित आव्यूह है, तो (1/2) × (A + AT) भी एक सममित आव्यूह है।

यदि A - AT एक विषम सममित आव्यूह है, तो (1/2 ) × (A - AT) भी एक विषम सममित आव्यूह है।

इस प्रकार, किसी भी वर्ग आव्यूह को विषम सममित आव्यूह और सममित आव्यूह के योग के रूप में व्यक्त किया जा सकता है