लघूगणकीय अवकलन: Difference between revisions
(added content) |
(added content) |
||
Line 3: | Line 3: | ||
घातांकीय फ़ंक्शन या बहुत सारे उप-फ़ंक्शन वाले फ़ंक्शन को लघुगणक विभेदन का उपयोग करके आसानी से विभेदित किया जा सकता है। आइए उदाहरणों के साथ लघुगणक विभेदन के अनुप्रयोगों के बारे में अधिक जानें। | घातांकीय फ़ंक्शन या बहुत सारे उप-फ़ंक्शन वाले फ़ंक्शन को लघुगणक विभेदन का उपयोग करके आसानी से विभेदित किया जा सकता है। आइए उदाहरणों के साथ लघुगणक विभेदन के अनुप्रयोगों के बारे में अधिक जानें। | ||
== परिभाषा == | |||
लघुगणकीय विभेदन लघुगणक गुणों और विभेदन के श्रृंखला नियम पर आधारित है और इसका उपयोग मुख्य रूप से f(x)g(x) के रूप के कार्यों को विभेदित करने के लिए किया जाता है। यह सरल और त्वरित चरणों में विभेदन को आसानी से करने में मदद करता है। जो कार्य जटिल हैं और जिन्हें बीजगणितीय रूप से हल नहीं किया जा सकता है और विभेदित नहीं किया जा सकता है, उन्हें लघुगणकीय विभेदन का उपयोग करके विभेदित किया जा सकता है। | लघुगणकीय विभेदन लघुगणक गुणों और विभेदन के श्रृंखला नियम पर आधारित है और इसका उपयोग मुख्य रूप से f(x)g(x) के रूप के कार्यों को विभेदित करने के लिए किया जाता है। यह सरल और त्वरित चरणों में विभेदन को आसानी से करने में मदद करता है। जो कार्य जटिल हैं और जिन्हें बीजगणितीय रूप से हल नहीं किया जा सकता है और विभेदित नहीं किया जा सकता है, उन्हें लघुगणकीय विभेदन का उपयोग करके विभेदित किया जा सकता है। | ||
== सूत्र == | |||
फ़ंक्शन f(x) का लघुगणक विभेदन फ़ंक्शन के विभेदन के बराबर होता है, जिसे फ़ंक्शन से विभाजित किया जाता है। यहाँ वह सूत्र दिया गया है जिसका उपयोग मुख्य रूप से लघुगणक विभेदन में किया जाता है। | फ़ंक्शन f(x) का लघुगणक विभेदन फ़ंक्शन के विभेदन के बराबर होता है, जिसे फ़ंक्शन से विभाजित किया जाता है। यहाँ वह सूत्र दिया गया है जिसका उपयोग मुख्य रूप से लघुगणक विभेदन में किया जाता है। | ||
Line 27: | Line 25: | ||
* logBA = (log A) / (log B) | * logBA = (log A) / (log B) | ||
लॉग विभेदन के अनुप्रयोग | == लॉग विभेदन के अनुप्रयोग == | ||
लॉग विभेदन के अनुप्रयोग फ़ंक्शन के गुणनफल, दो फ़ंक्शन के विभाजन और घातांकीय फ़ंक्शन के लिए हैं। आइए लॉगरिदमिक विभेदन के इन अनुप्रयोगों में से प्रत्येक पर नज़र डालें। | लॉग विभेदन के अनुप्रयोग फ़ंक्शन के गुणनफल, दो फ़ंक्शन के विभाजन और घातांकीय फ़ंक्शन के लिए हैं। आइए लॉगरिदमिक विभेदन के इन अनुप्रयोगों में से प्रत्येक पर नज़र डालें। | ||
Line 59: | Line 56: | ||
दो कार्यों के गुणनफल का यह विभेदन, जिसमें लघुगणकीय विभेदन शामिल है, लाइबनिज़ नियम कहलाता है। उपरोक्त नियम को "गुणनफल नियम" के नाम से जाना जाता है। | दो कार्यों के गुणनफल का यह विभेदन, जिसमें लघुगणकीय विभेदन शामिल है, लाइबनिज़ नियम कहलाता है। उपरोक्त नियम को "गुणनफल नियम" के नाम से जाना जाता है। | ||
कार्यों का विभाजन | == कार्यों का विभाजन == | ||
एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन का विभेदन जिसे फ़ंक्शन का भागफल भी कहा जाता है, लघुगणक विभेदन की प्रक्रिया द्वारा प्राप्त किया जाता है। एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन के लिए लघुगणक का अनुप्रयोग इसे दो फ़ंक्शनों में से प्रत्येक के लघुगणक में अंतर में बदल देता है। आइए एक फ़ंक्शन f(x) पर विचार करें, जो दो फ़ंक्शन g(x) और h(x) के भागफल के बराबर है। | एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन का विभेदन जिसे फ़ंक्शन का भागफल भी कहा जाता है, लघुगणक विभेदन की प्रक्रिया द्वारा प्राप्त किया जाता है। एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन के लिए लघुगणक का अनुप्रयोग इसे दो फ़ंक्शनों में से प्रत्येक के लघुगणक में अंतर में बदल देता है। आइए एक फ़ंक्शन f(x) पर विचार करें, जो दो फ़ंक्शन g(x) और h(x) के भागफल के बराबर है। | ||
Line 86: | Line 82: | ||
उपरोक्त नियम को "भागफल नियम" के नाम से जाना जाता है। | उपरोक्त नियम को "भागफल नियम" के नाम से जाना जाता है। | ||
== महत्वपूर्ण टिप्पणियाँ == | |||
जब हमें h(x) = f(x)g(x) के रूप वाले किसी फ़ंक्शन का व्युत्पन्न ज्ञात करना हो, तो लघुगणकीय विभेदन का उपयोग करना अनिवार्य है। | |||
यहाँ, प्रक्रिया को सार्थक बनाने के लिए दिए गए डोमेन में h(x) और f(x) दोनों को सकारात्मक होना चाहिए। | |||
[[Category:सांतत्य तथा अवकलनीयता]][[Category:गणित]][[Category:कक्षा-12]] | [[Category:सांतत्य तथा अवकलनीयता]][[Category:गणित]][[Category:कक्षा-12]] |
Revision as of 08:36, 2 December 2024
लघुगणक विभेदन का उपयोग बड़े कार्यों को विभेदित करने के लिए किया जाता है, जिसमें लघुगणक और विभेदन के श्रृंखला नियम का उपयोग किया जाता है। फ़ंक्शन f(x) का लघुगणक विभेदन f'(x)/f(x)· ddx.logf(x)=f′(x)f(x)· है। साथ ही लघुगणक का उपयोग फ़ंक्शन के गुणनफल को फ़ंक्शन के योग में और फ़ंक्शन के विभाजन को फ़ंक्शन के अंतर में बदल देता है।
घातांकीय फ़ंक्शन या बहुत सारे उप-फ़ंक्शन वाले फ़ंक्शन को लघुगणक विभेदन का उपयोग करके आसानी से विभेदित किया जा सकता है। आइए उदाहरणों के साथ लघुगणक विभेदन के अनुप्रयोगों के बारे में अधिक जानें।
परिभाषा
लघुगणकीय विभेदन लघुगणक गुणों और विभेदन के श्रृंखला नियम पर आधारित है और इसका उपयोग मुख्य रूप से f(x)g(x) के रूप के कार्यों को विभेदित करने के लिए किया जाता है। यह सरल और त्वरित चरणों में विभेदन को आसानी से करने में मदद करता है। जो कार्य जटिल हैं और जिन्हें बीजगणितीय रूप से हल नहीं किया जा सकता है और विभेदित नहीं किया जा सकता है, उन्हें लघुगणकीय विभेदन का उपयोग करके विभेदित किया जा सकता है।
सूत्र
फ़ंक्शन f(x) का लघुगणक विभेदन फ़ंक्शन के विभेदन के बराबर होता है, जिसे फ़ंक्शन से विभाजित किया जाता है। यहाँ वह सूत्र दिया गया है जिसका उपयोग मुख्य रूप से लघुगणक विभेदन में किया जाता है।
ddxlogf(x)=f′(x)f(x)
लॉगरिदमिक विभेदन का उपयोग तब किया जाता है जब फ़ंक्शन कई उप-फ़ंक्शनों से बना होता है, जिसमें फ़ंक्शनों के बीच एक उत्पाद, फ़ंक्शनों के बीच विभाजन, फ़ंक्शनों के बीच एक घातीय संबंध या किसी फ़ंक्शन को दूसरे फ़ंक्शन में बढ़ाया जाता है। लॉगरिदम फ़ंक्शन के उत्पाद को फ़ंक्शनों के योग में और फ़ंक्शनों के विभाजन को फ़ंक्शनों के अंतर में बदलने में मदद करते हैं। इसके अलावा, लॉगरिदम का उपयोग करके फ़ंक्शन को तोड़ने के बाद, इसे विभेदन के श्रृंखला नियम का उपयोग करके आसानी से एक सामान्य फ़ंक्शन के रूप में विभेदित किया जा सकता है। विभेदन के श्रृंखला नियम ने पहले लॉगरिदम को शामिल करते हुए फ़ंक्शन को विभेदित किया और फिर फ़ंक्शन को स्वतंत्र रूप से विभेदित किया। d/dx लॉग f(x) = 1/f(x) d/dx f(x)·
ddx.logf(x)=1f(x)ddxf(x)
लघुगणकीय गुणों का निम्नलिखित समूह कार्यों को सरल बनाने और विभेदन प्रक्रिया को निष्पादित करने में सहायता करता है।
- log AB = log A + log B
- log A/B = log A - log B
- log AB = B log A
- logBA = (log A) / (log B)
लॉग विभेदन के अनुप्रयोग
लॉग विभेदन के अनुप्रयोग फ़ंक्शन के गुणनफल, दो फ़ंक्शन के विभाजन और घातांकीय फ़ंक्शन के लिए हैं। आइए लॉगरिदमिक विभेदन के इन अनुप्रयोगों में से प्रत्येक पर नज़र डालें।
फ़ंक्शन का गुणनफल
दो या अधिक फ़ंक्शन के गुणनफल के लिए, लॉगरिदम का अनुप्रयोग गुणनफल को फ़ंक्शन के योग में बदल देता है और फ़ंक्शन के आसान विभेदन की सुविधा देता है। मान लें कि फ़ंक्शन f(x), क्रमशः दो उप-फ़ंक्शन g(x), और h(x) का गुणनफल है, और हम फ़ंक्शन के विभेदन के बाद लॉगरिदमिक लागू कर सकते हैं।
f(x) = g(x) · h(x)
आइए हम उपरोक्त समीकरण के दोनों ओर लघुगणक लागू करें जो कार्यों के गुणनफल को दर्शाता है।
log f(x) = log (g(x) · h(x))
log f(x) = log g(x) + log h(x)
Let us now differentiate on both sides.
d/dx log f(x) = d/dx log g(x) + d/dx log h(x)
f'(x)/f(x) = g'(x)/g(x) + h'(x)/h(x)
f'(x) = f(x) [g'(x)/g(x) + h'(x)/h(x)]
f'(x) = f(x) [h(x)·g'(x) + g(x)·h'(x)] / g(x)·h(x)
f'(x) = g(x)·h(x) [h(x)·g'(x) + g(x)·h'(x)] / g(x)·h(x)
f'(x) = h(x)·g'(x) + g(x)·h'(x)
दो कार्यों के गुणनफल का यह विभेदन, जिसमें लघुगणकीय विभेदन शामिल है, लाइबनिज़ नियम कहलाता है। उपरोक्त नियम को "गुणनफल नियम" के नाम से जाना जाता है।
कार्यों का विभाजन
एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन का विभेदन जिसे फ़ंक्शन का भागफल भी कहा जाता है, लघुगणक विभेदन की प्रक्रिया द्वारा प्राप्त किया जाता है। एक फ़ंक्शन के दूसरे फ़ंक्शन के साथ विभाजन के लिए लघुगणक का अनुप्रयोग इसे दो फ़ंक्शनों में से प्रत्येक के लघुगणक में अंतर में बदल देता है। आइए एक फ़ंक्शन f(x) पर विचार करें, जो दो फ़ंक्शन g(x) और h(x) के भागफल के बराबर है।
f(x) = g(x)/h(x)
आइए उपरोक्त बराबर के दोनों ओर लघुगणक लागू करें जो दोनों कार्यों के भागफल का प्रतिनिधित्व करते हैं।
log f(x) = log g(x)/h(x)
log f(x) = log g(x) - log h(x)
Further we can apply differentiation to the above logarithmic equation.
d/dx log f(x) = d/dx log g(x) - d/dx log h(x)
f'(x)/f(x) = g'(x)/g(x) - h'(x)/h(x)
f'(x) = f(x)[g'(x)/g(x) - h'(x)/h(x)]
f'(x) = f(x) [g'(x)·h(x) - g(x)·h'(x)]/g(x)·h(x)
f'(x) = g(x)/h(x) [g'(x)·h(x) - g(x)·h'(x)]/g(x)·h(x)
f'(x) = [g'(x)·h(x) - g(x)·h'(x)]/h2(x)
उपरोक्त नियम को "भागफल नियम" के नाम से जाना जाता है।
महत्वपूर्ण टिप्पणियाँ
जब हमें h(x) = f(x)g(x) के रूप वाले किसी फ़ंक्शन का व्युत्पन्न ज्ञात करना हो, तो लघुगणकीय विभेदन का उपयोग करना अनिवार्य है।
यहाँ, प्रक्रिया को सार्थक बनाने के लिए दिए गए डोमेन में h(x) और f(x) दोनों को सकारात्मक होना चाहिए।