स्पर्श रेखाएँ और अभिलंब: Difference between revisions

From Vidyalayawiki

(added content)
(added content)
 
Line 18: Line 18:
नीचे दिए गए वक्रों के समुच्चय के लिए स्पर्शरेखा और अभिलंब बनाए जा सकते हैं। स्पर्शरेखा और अभिलंब क्रमशः वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय के लिए खींचे जा सकते हैं।
नीचे दिए गए वक्रों के समुच्चय के लिए स्पर्शरेखा और अभिलंब बनाए जा सकते हैं। स्पर्शरेखा और अभिलंब क्रमशः वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय के लिए खींचे जा सकते हैं।


* वृत्त: बिंदु <math>(x_1, y_1)</math> पर वृत्त <math>x^2 + y^2 + 2gx + 2fy + c = 0</math> की स्पर्शरेखा का समीकरण <math>xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0</math>  है।
* वृत्त : बिंदु <math>(x_1, y_1)</math> पर वृत्त <math>x^2 + y^2 + 2gx + 2fy + c = 0</math> की स्पर्शरेखा का समीकरण <math>xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0</math>  है।
* परवलय: बिंदु <math>(x_1, y_1)</math> पर परवलय <math>y^2 = 4ax</math> की स्पर्शरेखा का समीकरण <math>yy_1 = 2a(x + x_1)</math> है।
* परवलय : बिंदु <math>(x_1, y_1)</math> पर परवलय <math>y^2 = 4ax</math> की स्पर्शरेखा का समीकरण <math>yy_1 = 2a(x + x_1)</math> है।
* दीर्घवृत्त: बिंदु <math>(x_1, y_1)</math> पर दीर्घवृत्त <math>x^2/a^2 + y^2/b^2 = 1</math> की स्पर्शरेखा का समीकरण  <math>xx_1/a^2 + yy_1/b^2 = 1</math>  है।
* दीर्घवृत्त : बिंदु <math>(x_1, y_1)</math> पर दीर्घवृत्त <math>x^2/a^2 + y^2/b^2 = 1</math> की स्पर्शरेखा का समीकरण  <math>xx_1/a^2 + yy_1/b^2 = 1</math>  है।
* हाइपरबोला: बिंदु <math>(x_1, y_1)</math> पर हाइपरबोला <math>x^2/a^2 - y^2/b^2 = 1</math> की स्पर्शरेखा का समीकरण <math>xx_1/a^2 - yy_1/b^2 = 1</math>  है।
* अतिपरवलय : बिंदु <math>(x_1, y_1)</math> पर हाइपरबोला <math>x^2/a^2 - y^2/b^2 = 1</math> की स्पर्शरेखा का समीकरण <math>xx_1/a^2 - yy_1/b^2 = 1</math>  है।


प्रत्येक वक्र के लिए बिंदु <math>(x_1, y_1)</math>पर अभिलंब का समीकरण, बिंदु पर वक्र के ऋणात्मक विभेदन के व्युत्क्रम को ढलान के रूप में लेकर और फिर अभिलंब का समीकरण बनाकर परिकलित किया जा सकता है।  
प्रत्येक वक्र के लिए बिंदु <math>(x_1, y_1)</math>पर अभिलंब का समीकरण, बिंदु पर वक्र के ऋणात्मक विभेदन के व्युत्क्रम को ढलान के रूप में लेकर और फिर अभिलंब का समीकरण बनाकर परिकलित किया जा सकता है।  

Latest revision as of 16:52, 3 December 2024

स्पर्शरेखा और अभिलंब वक्रों से जुड़ी रेखाएँ हैं। स्पर्शरेखा एक रेखा है जो वक्र को एक अलग बिंदु पर स्पर्श करती है, और वक्र पर प्रत्येक बिंदु पर एक स्पर्शरेखा होती है। अभिलंब संपर्क बिंदु पर स्पर्शरेखा के लंबवत एक रेखा है। बिंदु पर स्पर्शरेखा का समीकरण के रूप का है, और इसी बिंदु से गुजरने वाले अभिलंब का समीकरण है।

आइए उदाहरणों, प्रायः पूछे जाने वाले प्रश्नों की सहायता से विभिन्न वक्रों जैसे कि वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय और उनके गुणों के लिए स्पर्शरेखा और अभिलंब के समीकरण को ज्ञात करने के तरीके के बारे में अधिक जानें।

परिभाषा

स्पर्शरेखा और अभिलंब वे रेखाएँ हैं जो वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय जैसे वक्रों से जुड़ी होती हैं। स्पर्शरेखा एक रेखा होती है जो वक्र को एक विशिष्ट बिंदु पर स्पर्श करती है, और इस विशिष्ट बिंदु को संपर्क बिंदु कहा जाता है। अभिलंब, संपर्क बिंदु पर स्पर्शरेखा के लंबवत एक रेखा होती है। अभिलंब वक्र के नाभि से भी होकर गुजरता है।

वक्र पर स्थित प्रत्येक विशिष्ट बिंदु पर कई स्पर्शरेखाएँ खींची जा सकती हैं। स्पर्शरेखा और अभिलंब सीधी रेखाएँ होती हैं और इसलिए उन्हें और में रैखिक समीकरण के रूप में दर्शाया जाता है। स्पर्शरेखा और अभिलंब के समीकरण का सामान्य रूप है। संपर्क बिंदु स्पर्शरेखा के समीकरण और वक्र के समीकरण को संतुष्ट करता है।

स्पर्श रेखाएँ और अभिलंब ज्ञात करने की विधि

वक्र के समीकरण की सहायता से स्पर्शरेखा और अभिलंब की गणना की जा सकती है। वक्र के समीकरण के विभेदन द्वारा स्पर्शरेखा और अभिलंब के समीकरण की गणना की जा सकती है। स्वतंत्र चर x के संबंध में वक्र का विभेदन है और यह स्पर्शरेखा का ढलान देता है, और विभेदन का ऋणात्मक व्युत्क्रम वक्र के अभिलंब का ढलान देता है।

इस ढलान को के रूप में दर्शाया जाता है, और स्पर्शरेखा और अभिलंब के समीकरण की गणना रेखा के समीकरण के बिंदु-ढलान रूप की सहायता से की जा सकती है -

स्पर्शरेखा और अभिलंब एक दूसरे के लंबवत होते हैं, और स्पर्शरेखा के ढलान और अभिलंब के ढलान का गुणनफल के बराबर होता है। एक बिंदु से गुजरने वाली और ढलान वाली स्पर्शरेखा के समीकरण का सामान्य रूप है। और इसी बिंदु से गुजरने वाले अभिलंब का समीकरण है।

विभिन्न वक्रों के लिए स्पर्शरेखाएँ और अभिलंब

नीचे दिए गए वक्रों के समुच्चय के लिए स्पर्शरेखा और अभिलंब बनाए जा सकते हैं। स्पर्शरेखा और अभिलंब क्रमशः वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय के लिए खींचे जा सकते हैं।

  • वृत्त : बिंदु पर वृत्त की स्पर्शरेखा का समीकरण है।
  • परवलय : बिंदु पर परवलय की स्पर्शरेखा का समीकरण है।
  • दीर्घवृत्त : बिंदु पर दीर्घवृत्त की स्पर्शरेखा का समीकरण है।
  • अतिपरवलय : बिंदु पर हाइपरबोला की स्पर्शरेखा का समीकरण है।

प्रत्येक वक्र के लिए बिंदु पर अभिलंब का समीकरण, बिंदु पर वक्र के ऋणात्मक विभेदन के व्युत्क्रम को ढलान के रूप में लेकर और फिर अभिलंब का समीकरण बनाकर परिकलित किया जा सकता है।

उदाहरण

उदाहरण: वृत्त के बिन्दु पर स्पर्श रेखा और अभिलम्ब का समीकरण ज्ञात कीजिए।

समाधान: वृत्त का दिया गया समीकरण है। स्पर्शरेखा का ढलान के संबंध में उपरोक्त व्यंजक के अवकलज को लेकर प्राप्त किया जाता है।

आइए स्पर्शरेखा की ढलान प्राप्त करने के लिए उपरोक्त विभेदन में बिंदु को प्रतिस्थापित करें। स्पर्शरेखा की ढलान स्पर्शरेखा के समीकरण की गणना रेखा के समीकरण के बिंदु ढलान रूप का उपयोग करके की जा सकती है ।

अभिलंब की ढलान है।

अभिलंब के समीकरण की गणना बिंदु का उपयोग करके भी की जा सकती है, और रेखा के समीकरण के बिंदु ढलान रूप के माध्यम से भी की जा सकती है ।

इसलिए स्पर्शरेखा का समीकरण है, और अभिलंब का समीकरण है।

गुणधर्म

स्पर्शरेखा और अभिलंब के निम्नलिखित गुणधर्म स्पर्शरेखा और अभिलंब को बेहतर ढंग से समझने में सहायता करते हैं।

  • स्पर्शरेखा और अभिलंब एक दूसरे के लंबवत होते हैं।
  • स्पर्शरेखा और अभिलंब के ढलानों का गुणनफल के बराबर होता है।
  • स्पर्शरेखाएँ वक्र के बाहर होती हैं और अभिलंब वक्र के अंदर होते हैं।
  • वक्र की प्रत्येक स्पर्शरेखा के साथ एक अभिलंब जुड़ा होता है।
  • वक्र का अभिलंब निश्चित रूप से वक्र के नाभि या केंद्र से होकर नहीं गुज़र सकता है।
  • स्पर्शरेखाएँ और अभिलंब सीधी रेखाएँ होती हैं और इन्हें रैखिक समीकरणों के रूप में दर्शाया जाता है।
  • एक वक्र पर अनंत संख्या में स्पर्शरेखाएँ खींची जा सकती हैं।