सन्निकटन: Difference between revisions

From Vidyalayawiki

(added content)
(formulas)
Line 1: Line 1:
सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक संख्या अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं।
सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक संख्या अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं।


मान लें कि <math>f</math> एक दिया गया फ़ंक्शन है और <math>y = f(x)</math> है। मान लें कि<math>\bigtriangleup x, x</math>में एक छोटी वृद्धि को दर्शाता है।
मान लें कि <math>f</math> एक दिया गया फलन है और <math>y = f(x)</math> है। मान लें कि<math>\bigtriangleup x, x</math>में एक छोटी वृद्धि को दर्शाता है।


अब <math>y</math> में वृद्धि <math>x</math> में वृद्धि की तरह है, जिसे द्वारा दर्शाया गया है  
अब <math>y</math> में वृद्धि <math>x</math> में वृद्धि की तरह है, जिसे द्वारा दर्शाया गया है  
Line 16: Line 16:


=== उदाहरण: ===
=== उदाहरण: ===
<math>\sqrt{26}</math> का अनुमानित मान ज्ञात कीजिए।
उदाहरण:    <math>\sqrt{26}</math> का सन्निकटन मान ज्ञात कीजिए।


समाधान''':'''  
समाधान''':'''  


यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फ़ंक्शन का अनुमानित मान ज्ञात करने के लिए डेरिवेटिव का उपयोग करना होगा।  
यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फलन का अनुमानित मान ज्ञात करने के लिए अवकलन का उपयोग करना होगा।  


मान लें कि f(x) =√x और इसका व्युत्पन्न f’(x)= 1/2x^1/2 है  
मान लें कि <math>f(x) =\sqrt{x }</math> और इसका अवकलज  <math>f'(x)= 1/2x^{1/2}</math> है  


अब हम सन्निकटन का सूत्र जानते हैं   
अब हम सन्निकटन का सूत्र जानते हैं   


'''∆y ≈ ∆x = (dy/dx). ∆x f(x+∆x)- f(x) = f’(x). ∆x f(x+∆x)= f(x) + f’(x). ∆x'''
<math>\bigtriangleup y \approx \bigtriangleup x = (dy/dx)\cdot \bigtriangleup x f(x+\bigtriangleup x)-f(x) = f'(x)\cdot \bigtriangleup x f(x+\bigtriangleup x)= f(x) + f'(x)\cdot \bigtriangleup x</math>


Here we will assume x near to 25 which is a perfect square.
यहां हम <math>x</math>  को <math>25 </math> के करीब मानेंगे जो कि एक पूर्ण वर्ग है।


So we will assume x = 25 x2 – x1 = 26 25 = 1
इसलिए हम मान लेंगे <math>x = 25 x_2 -x_1 = 26 - 25 = 1</math>


Here tells us the change in x. Let x = 25 and now we will put the values in the formula
यहाँ <math>x</math> में परिवर्तन बताया गया है। मान लीजिए <math>x = 25</math> और अब हम मानों को सूत्र में डालेंगे


'''f(x + ∆x) = f(x) + f’(x). ∆x f(25 + 1)'''
<math>f(x + \bigtriangleup x) = f(x) + f'(x). \bigtriangleup x f(25 + 1)</math>


= f(25) + f'(25) f(26) = √25 + (1/2.25^1/2).1  
<math>= f(25) + f'(25) f(26) = \sqrt{25} + (1/2.25^{1/2}).1</math>


=  5 + 1/10 √26
<math>= 5 + 1/10 \sqrt{26}</math>


= 5 + 0.1  
<math>= 5 + 0.1</math>


=  5.1  
<math>= 5.1</math>


सन्निकटन और त्रुटियाँ
== सन्निकटन और त्रुटियाँ ==
यदि हम<math>f(x)</math> के व्युत्पन्न का उपयोग करते हैं तो यह हमें अनंत रूप से छोटे अंतराल <math>dx</math> पर <math>f(x)</math> में सटीक परिवर्तन देता है। जैसा कि हम जानते हैं कि परिवर्तन की तात्कालिक दर को <math>x</math> में परिवर्तन के लिए असतत मान के रूप में सीमा का उपयोग करके परिभाषित किया जाता है ताकि <math>\bigtriangleup x</math>शून्य हो जाए।


यदि हम f(x) के व्युत्पन्न का उपयोग करते हैं तो यह हमें अनंत रूप से छोटे अंतराल dx पर f(x) में सटीक परिवर्तन देता है। जैसा कि हम जानते हैं कि परिवर्तन की तात्कालिक दर को x में परिवर्तन के लिए असतत मान के रूप में सीमा का उपयोग करके परिभाषित किया जाता है ताकि ∆x शून्य हो जाए।
उदाहरण:  <math>(8.01)4/3 + (8.01)2(8.01)4/3 + (8.01)2</math> का मान ज्ञात कीजिए ।


'''Example 1''': '''Find the value of (8.01)4/3 + (8.01)2(8.01)4/3 + (8.01)2'''
समाधान''':''' <blockquote>मान लीजिए <math>y = f(x) = x4/3 + x2y = f(x) = x4/3 + x2</math>


'''Solution:''' <blockquote>Let y = f(x) = x4/3 + x2y = f(x) = x4/3 + x2
मान लीजिए <math>x_0 = 8</math> तो<math>y_0 = 16 + 64 = 80</math>


Let x0 = 8 so that y0 = 16 + 64 = 80
<math>\bigtriangleup x = 0.01 \Rightarrow \bigtriangleup y= f'(x) \times \bigtriangleup x = (43 \times 1/3 + 2x) \times \bigtriangleup x = (83+16) \times 0 .01</math>


Δx = 0.01 ⇒ Δy = f′(x) × Δx = (43 x 1/3 + 2x) × Δx = (83+16) × 0.01
<math>=0.563=0.1867 </math>


=0.563=0.1867  
<math>\Rightarrow y_0= y_0+\bigtriangleup y</math>


⇒y0=y0+Δy
<math>=80.1867</math>
 
=80.1867


</blockquote>
</blockquote>
[[Category:अवकलज के अनुप्रयोग]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:अवकलज के अनुप्रयोग]][[Category:गणित]][[Category:कक्षा-12]]

Revision as of 13:03, 4 December 2024

सन्निकटन किसी अन्य वस्तु के समान होता है, लेकिन बिल्कुल समान नहीं होता। सन्निकटन तब होता है जब कोई सटीक संख्यात्मक संख्या अज्ञात होती है या उसे प्राप्त करना कठिन होती है। गणित में, हम कुछ निश्चित मात्राओं के सन्निकट मान ज्ञात करने के लिए अवकलन का उपयोग करते हैं।

मान लें कि एक दिया गया फलन है और है। मान लें किमें एक छोटी वृद्धि को दर्शाता है।

अब में वृद्धि में वृद्धि की तरह है, जिसे द्वारा दर्शाया गया है

, द्वारा दिया गया है

हम निम्नलिखित को परिभाषित करते हैं:

(i) ( का अवकलन ) द्वारा परिभाषित किया जाता है।

(ii) ( का अवकलन ) or द्वारा परिभाषित किया गया है।

यदि , की तुलना में अपेक्षाकृत छोटा है।

उदाहरण:

उदाहरण: का सन्निकटन मान ज्ञात कीजिए।

समाधान:

यहां यदि दी गई संख्या पूर्ण वर्ग है तो मूल के नीचे का मान ज्ञात करना बहुत आसान है लेकिन इस प्रकार की संख्याओं के लिए हमें फलन का अनुमानित मान ज्ञात करने के लिए अवकलन का उपयोग करना होगा।

मान लें कि और इसका अवकलज है

अब हम सन्निकटन का सूत्र जानते हैं

यहां हम को के करीब मानेंगे जो कि एक पूर्ण वर्ग है।

इसलिए हम मान लेंगे

यहाँ में परिवर्तन बताया गया है। मान लीजिए और अब हम मानों को सूत्र में डालेंगे

सन्निकटन और त्रुटियाँ

यदि हम के व्युत्पन्न का उपयोग करते हैं तो यह हमें अनंत रूप से छोटे अंतराल पर में सटीक परिवर्तन देता है। जैसा कि हम जानते हैं कि परिवर्तन की तात्कालिक दर को में परिवर्तन के लिए असतत मान के रूप में सीमा का उपयोग करके परिभाषित किया जाता है ताकि शून्य हो जाए।

उदाहरण: का मान ज्ञात कीजिए ।

समाधान:

मान लीजिए

मान लीजिए तो