कुछ विशिष्ट फलनों के समाकलन: Difference between revisions

From Vidyalayawiki

(Updated Category)
(added content)
Line 1: Line 1:
Integrals of Some Particular Functions
इंटीग्रल एक विधि है, जो बड़े पैमाने पर कार्यों को संक्षेप में प्रस्तुत करती है। इस लेख में, आइए कुछ विशेष कार्यों के इंटीग्रल पर चर्चा करें जो आम तौर पर गणना के लिए उपयोग किए जाते हैं। इन इंटीग्रल के वास्तविक जीवन में भी कई तरह के अनुप्रयोग हैं, जैसे कि वक्रों के बीच का क्षेत्र ज्ञात करना, आयतन ज्ञात करना, किसी फ़ंक्शन का औसत मान ज्ञात करना, द्रव्यमान का केंद्र, गतिज ऊर्जा, किए गए कार्य की मात्रा, और बहुत कुछ।
 
कई महत्वपूर्ण एकीकरण सूत्र हैं जो कई अन्य मानक समाकलनों को एकीकृत करने के लिए लागू किए जाते हैं। इस लेख में, हम इन विशेष कार्यों के समाकलनों पर एक नज़र डालेंगे और देखेंगे कि उनका उपयोग कई अन्य मानक समाकलनों में कैसे किया जाता है।
 
विशेष कार्यों के समाकलन
 
 
 
 
समाकलन कार्यों का प्रमाण
 
अब जब आप इन समाकलन कार्यों और उनके मूल्यों के बारे में जानते हैं, तो आइए इनमें से प्रत्येक फ़ंक्शन के प्रमाण पर एक नज़र डालें।
 
∫ dy / (y<sup>2</sup> – a<sup>2</sup>) = 1/2a log |(y – a) / (y + a)| + C
 
As you know,
 
1 / (y<sup>2</sup> – a<sup>2</sup>) = 1 / (y – a) (y + a)
 
Solving this,
 
= 1/2a
 
Reducing it further,
 
= 1/2a
 
Therefore, ∫ dy / (y<sup>2</sup> – a<sup>2</sup>) = 1/2a
 
Solving this,
 
= 1/2a  + C
 
Hence,
 
= 1/2a log |(y – a) / (y + a)| + C
 
# Integral of function 2
 
∫ dy / (a<sup>2</sup> – y<sup>2</sup>) = 1/2a log |(a + y) / (a – y)| + C
 
As you,
 
1 / (a<sup>2</sup> – y<sup>2</sup>) = 1 / (a – y) (a + y)
 
Solving,
 
= 1/2a
 
Hence,
 
= 1/2a
 
Therefore, ∫ dy / (a<sup>2</sup> – y<sup>2</sup>) = 1/2a
 
When you solve,
 
= 1/2a  + C
 
Hence,
 
= 1/2a log |(a + y) / (a – y)| + C
 
# Integral of Function 3
 
∫ dy / (y<sup>2</sup> + a<sup>2</sup>) = 1/a tan<sup>–1</sup> (y/a) + C
 
Substitute y = a tan t, so you have dy = a sec<sup>2</sup> t dt.
 
Therefore,
 
∫ dy / (y<sup>2</sup> + a<sup>2</sup>) = ∫ [(a sec<sup>2</sup> t dt) / (a<sup>2</sup> tan<sup>2</sup> t + a<sup>2</sup>)]
 
Solving,
 
∫ dy / (y<sup>2</sup> + a<sup>2</sup>) = 1/a ∫ dt = t/a + C
 
Re-substitute the value of t,
 
∫ dy / (y<sup>2</sup> + a<sup>2</sup>) = 1/a tan<sup>–1</sup> (y/a) + C
 
# Integral of Function 4
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = log |y + √ (y<sup>2</sup> – a<sup>2</sup>)| + C
 
Substitute y = a sec t
 
So, dy = a sec t tan t dt.
 
Therefore,
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = ∫ a sec t tan t dt / √ (a<sup>2</sup> sec<sup>2</sup> t – a<sup>2</sup>)
 
Solving,
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = ∫ sec t dt = log |sec t + tan t| + C<sub>1</sub>
 
Substituting the value of t again,
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = log |(y/a) + √ [(y<sup>2</sup> – a<sup>2</sup>) / a<sup>2</sup>]| + C<sub>1</sub>
 
Solving,
 
= log |y + √(y<sup>2</sup> – a<sup>2</sup>)| – log |a| + C<sub>1</sub>
 
Hence,
 
= log |y + √(y<sup>2</sup> – a<sup>2</sup>)| + C
 
where, C = C<sub>1</sub> – log |a|
 
# Integral of Function 5
 
∫ dy / √ (a<sup>2</sup> – y<sup>2</sup>) = sin<sup>–1</sup> (y/a) + C
 
Substitute y = a sin t
 
dy = a cos t dt.
 
Therefore,
 
∫ dy / √ (a<sup>2</sup> – y<sup>2</sup>) = ∫ a cos t dt / √ (a<sup>2</sup> – a<sup>2</sup> sin<sup>2</sup> t)
 
Solving,
 
∫ dy / √ (a<sup>2</sup> – y<sup>2</sup>) = ∫ t dt = t + C
 
Substituting the value of t,
 
∫ dy / √ (a<sup>2</sup> – y<sup>2</sup>) = sin<sup>–1</sup> (y/a) + C
 
# Integral of Function 6
 
∫ dy / √ (y<sup>2</sup> + a<sup>2</sup>) = log |y + √ (y<sup>2</sup> + a<sup>2</sup>)| + C
 
Substitute y = a tan t,
 
dy = a sec<sup>2</sup> t dt
 
Therefore,
 
∫ dy / √ (y<sup>2</sup> + a<sup>2</sup>) = ∫ a sec<sup>2</sup> t dt / √ (a<sup>2</sup> tan<sup>2</sup> t + a<sup>2</sup>)
 
Solving,
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = ∫ sec t dt = log |sec t + tan t| + C<sub>1</sub>
 
Re-substituting the value of t,
 
∫ dy / √ (y<sup>2</sup> – a<sup>2</sup>) = log |(y/a) + √ [(y<sup>2</sup> + a<sup>2</sup>) / a<sup>2</sup>]| + C<sub>1</sub>
 
Solving,
 
= log |y + √(y<sup>2</sup> + a<sup>2</sup>)| – log |a| + C<sub>1</sub>
 
Hence,
 
= log |y + √(y<sup>2</sup> + a<sup>2</sup>)| + C
 
where, C = C<sub>1</sub> – log |a|
 
# Integral of Function 7
 
∫ dy / (ay<sup>2</sup> + by + c)
 
You can write this as
 
ay<sup>2</sup> + by + c = a [y<sup>2</sup> + (b/a)y + (c/a)]
 
Solving,
 
a [(y + b/2a)<sup>2</sup> + (c/a – b<sup>2</sup>/4a<sup>2</sup>)]
 
Substitute (y + b/2a) = t and you would get dy = dt.
 
Substitute (c/a – b<sup>2</sup>/4a<sup>2</sup>) = ±k<sup>2</sup>.
 
Therefore,
 
ay<sup>2</sup> + by + c = a (t<sup>2</sup> ± k<sup>2</sup>)
 
where the signs + or – depend on the sign of the equation (c/a – b<sup>2</sup>/4a<sup>2</sup>).
 
Therefore,
 
∫ dy / (ay<sup>2</sup> + by + c) = 1/a ∫ dt / (t<sup>2</sup> ± k<sup>2</sup>)
 
You can evaluate this equation by using one or more of the above siy integration formulas shown. Remember that you can also solve for the equation ∫ dy / √ (ay<sup>2</sup> + by + c) in a similar manner.
 
# Integral of Function 8
 
∫ [(py + q) / (ay<sup>2</sup> + by + c)] dy,
 
where p, q, a, b, c are known to be constants.
 
To solve this, you must find the constants A and B such that,
 
(py + q) = A d/dy (ay<sup>2</sup> + by + c) + B, which is equal to = A (2ay + b) + B
 
To determine ‘A’ and ‘B’, first, equate from both the sides of the coefficients of y and the constant terms. ‘A’ and ‘B’ can then be obtained and therefore, the integral is reduced to any one of the known forms.
 
=== '''Solved Example''' ===
Find the integral of (y + 3) / √ (5 – 4y + y<sup>2</sup>) with respect to y.
 
Solution
 
You can express
 
y + 3 = A d/dy (5 – 4y + y<sup>2</sup>) + B = A (– 4 – 2y) + B
 
Equating the coefficients, you get
 
A = – ½ and B = 1
 
Therefore,
 
∫ [(y + 3) / √ (5 – 4y + y<sup>2</sup>)] dy = – ½ ∫ [(– 4 – 2y) / √ (5 – 4y + y<sup>2</sup>)] dy + ∫ dy / √ (5 – 4y + y<sup>2</sup>)
 
= – ½ I<sub>1</sub> + I<sub>2</sub> … (a)
 
Solving I<sub>1</sub>
 
Substitute (5 – 4y + y<sup>2</sup>) = t,
 
(– 4 – 2y) dy = dt
 
Therefore,
 
I<sub>1</sub> = ∫ [(– 4 – 2y) / √ (5 – 4y + y<sup>2</sup>)] dy = ∫ dt / √ t = 2 √ t + C<sub>1</sub>
 
= 2 √ (5 – 4y + y<sup>2</sup>) + C<sub>1</sub> … (b)
 
Solving I<sub>2</sub>
 
I<sub>2</sub> = ∫ dy / √ (5 – 4y + y<sup>2</sup>) =
 
∫ dy / √ [9 – (y + 2)<sup>2</sup>]
 
Substitute (y + 2) = t,
 
dy = dt
 
Therefore,
 
I<sub>2</sub> = ∫ dt / √ (3<sup>2</sup> – t<sup>2</sup>) = sin<sup>–1</sup> (t/3) + C<sub>2</sub>
 
Solving,
 
= sin<sup>–1</sup>  + C<sub>2</sub> … (c)
 
Substitute (b) and (c) in (a),
 
∫ [(y + 3) / √ (5 – 4y + y<sup>2</sup>)] dy = – ½ I<sub>1</sub> + I<sub>2</sub>
 
= – √ (5 – 4y + y<sup>2</sup>) + sin<sup>–1</sup>  + C
 
where C = C<sub>2</sub> = C<sub>1</sub>/2.
[[Category:समाकलन]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:समाकलन]][[Category:गणित]][[Category:कक्षा-12]]

Revision as of 11:38, 5 December 2024

इंटीग्रल एक विधि है, जो बड़े पैमाने पर कार्यों को संक्षेप में प्रस्तुत करती है। इस लेख में, आइए कुछ विशेष कार्यों के इंटीग्रल पर चर्चा करें जो आम तौर पर गणना के लिए उपयोग किए जाते हैं। इन इंटीग्रल के वास्तविक जीवन में भी कई तरह के अनुप्रयोग हैं, जैसे कि वक्रों के बीच का क्षेत्र ज्ञात करना, आयतन ज्ञात करना, किसी फ़ंक्शन का औसत मान ज्ञात करना, द्रव्यमान का केंद्र, गतिज ऊर्जा, किए गए कार्य की मात्रा, और बहुत कुछ।

कई महत्वपूर्ण एकीकरण सूत्र हैं जो कई अन्य मानक समाकलनों को एकीकृत करने के लिए लागू किए जाते हैं। इस लेख में, हम इन विशेष कार्यों के समाकलनों पर एक नज़र डालेंगे और देखेंगे कि उनका उपयोग कई अन्य मानक समाकलनों में कैसे किया जाता है।

विशेष कार्यों के समाकलन



समाकलन कार्यों का प्रमाण

अब जब आप इन समाकलन कार्यों और उनके मूल्यों के बारे में जानते हैं, तो आइए इनमें से प्रत्येक फ़ंक्शन के प्रमाण पर एक नज़र डालें।

∫ dy / (y2 – a2) = 1/2a log |(y – a) / (y + a)| + C

As you know,

1 / (y2 – a2) = 1 / (y – a) (y + a)

Solving this,

= 1/2a

Reducing it further,

= 1/2a

Therefore, ∫ dy / (y2 – a2) = 1/2a

Solving this,

= 1/2a + C

Hence,

= 1/2a log |(y – a) / (y + a)| + C

  1. Integral of function 2

∫ dy / (a2 – y2) = 1/2a log |(a + y) / (a – y)| + C

As you,

1 / (a2 – y2) = 1 / (a – y) (a + y)

Solving,

= 1/2a

Hence,

= 1/2a

Therefore, ∫ dy / (a2 – y2) = 1/2a

When you solve,

= 1/2a + C

Hence,

= 1/2a log |(a + y) / (a – y)| + C

  1. Integral of Function 3

∫ dy / (y2 + a2) = 1/a tan–1 (y/a) + C

Substitute y = a tan t, so you have dy = a sec2 t dt.

Therefore,

∫ dy / (y2 + a2) = ∫ [(a sec2 t dt) / (a2 tan2 t + a2)]

Solving,

∫ dy / (y2 + a2) = 1/a ∫ dt = t/a + C

Re-substitute the value of t,

∫ dy / (y2 + a2) = 1/a tan–1 (y/a) + C

  1. Integral of Function 4

∫ dy / √ (y2 – a2) = log |y + √ (y2 – a2)| + C

Substitute y = a sec t

So, dy = a sec t tan t dt.

Therefore,

∫ dy / √ (y2 – a2) = ∫ a sec t tan t dt / √ (a2 sec2 t – a2)

Solving,

∫ dy / √ (y2 – a2) = ∫ sec t dt = log |sec t + tan t| + C1

Substituting the value of t again,

∫ dy / √ (y2 – a2) = log |(y/a) + √ [(y2 – a2) / a2]| + C1

Solving,

= log |y + √(y2 – a2)| – log |a| + C1

Hence,

= log |y + √(y2 – a2)| + C

where, C = C1 – log |a|

  1. Integral of Function 5

∫ dy / √ (a2 – y2) = sin–1 (y/a) + C

Substitute y = a sin t

dy = a cos t dt.

Therefore,

∫ dy / √ (a2 – y2) = ∫ a cos t dt / √ (a2 – a2 sin2 t)

Solving,

∫ dy / √ (a2 – y2) = ∫ t dt = t + C

Substituting the value of t,

∫ dy / √ (a2 – y2) = sin–1 (y/a) + C

  1. Integral of Function 6

∫ dy / √ (y2 + a2) = log |y + √ (y2 + a2)| + C

Substitute y = a tan t,

dy = a sec2 t dt

Therefore,

∫ dy / √ (y2 + a2) = ∫ a sec2 t dt / √ (a2 tan2 t + a2)

Solving,

∫ dy / √ (y2 – a2) = ∫ sec t dt = log |sec t + tan t| + C1

Re-substituting the value of t,

∫ dy / √ (y2 – a2) = log |(y/a) + √ [(y2 + a2) / a2]| + C1

Solving,

= log |y + √(y2 + a2)| – log |a| + C1

Hence,

= log |y + √(y2 + a2)| + C

where, C = C1 – log |a|

  1. Integral of Function 7

∫ dy / (ay2 + by + c)

You can write this as

ay2 + by + c = a [y2 + (b/a)y + (c/a)]

Solving,

a [(y + b/2a)2 + (c/a – b2/4a2)]

Substitute (y + b/2a) = t and you would get dy = dt.

Substitute (c/a – b2/4a2) = ±k2.

Therefore,

ay2 + by + c = a (t2 ± k2)

where the signs + or – depend on the sign of the equation (c/a – b2/4a2).

Therefore,

∫ dy / (ay2 + by + c) = 1/a ∫ dt / (t2 ± k2)

You can evaluate this equation by using one or more of the above siy integration formulas shown. Remember that you can also solve for the equation ∫ dy / √ (ay2 + by + c) in a similar manner.

  1. Integral of Function 8

∫ [(py + q) / (ay2 + by + c)] dy,

where p, q, a, b, c are known to be constants.

To solve this, you must find the constants A and B such that,

(py + q) = A d/dy (ay2 + by + c) + B, which is equal to = A (2ay + b) + B

To determine ‘A’ and ‘B’, first, equate from both the sides of the coefficients of y and the constant terms. ‘A’ and ‘B’ can then be obtained and therefore, the integral is reduced to any one of the known forms.

Solved Example

Find the integral of (y + 3) / √ (5 – 4y + y2) with respect to y.

Solution

You can express

y + 3 = A d/dy (5 – 4y + y2) + B = A (– 4 – 2y) + B

Equating the coefficients, you get

A = – ½ and B = 1

Therefore,

∫ [(y + 3) / √ (5 – 4y + y2)] dy = – ½ ∫ [(– 4 – 2y) / √ (5 – 4y + y2)] dy + ∫ dy / √ (5 – 4y + y2)

= – ½ I1 + I2 … (a)

Solving I1

Substitute (5 – 4y + y2) = t,

(– 4 – 2y) dy = dt

Therefore,

I1 = ∫ [(– 4 – 2y) / √ (5 – 4y + y2)] dy = ∫ dt / √ t = 2 √ t + C1

= 2 √ (5 – 4y + y2) + C1 … (b)

Solving I2

I2 = ∫ dy / √ (5 – 4y + y2) =

∫ dy / √ [9 – (y + 2)2]

Substitute (y + 2) = t,

dy = dt

Therefore,

I2 = ∫ dt / √ (32 – t2) = sin–1 (t/3) + C2

Solving,

= sin–1 + C2 … (c)

Substitute (b) and (c) in (a),

∫ [(y + 3) / √ (5 – 4y + y2)] dy = – ½ I1 + I2

= – √ (5 – 4y + y2) + sin–1 + C

where C = C2 = C1/2.