रैखिक प्रोग्रामन समस्या और उसका गणितीय सूत्रीकरण: Difference between revisions
(added content) |
(ad) |
||
Line 1: | Line 1: | ||
रैखिक | रैखिक प्रोग्रामन एक ऐसी प्रक्रिया है जिसका उपयोग रैखिक फलन के सर्वोत्तम परिणाम को निर्धारित करने के लिए किया जाता है। यह कुछ सरल धारणाएँ बनाकर रैखिक अनुकूलन करने का सबसे अच्छा उपाय है। रैखिक फलन को उद्देश्य फलन के रूप में जाना जाता है। वास्तविक दुनिया के संबंध बेहद जटिल हो सकते हैं। हालाँकि, रैखिक प्रोग्रामन का उपयोग ऐसे संबंधों को दर्शाने के लिए किया जा सकता है, जिससे उनका विश्लेषण करना आसान हो जाता है। | ||
रैखिक | रैखिक प्रोग्रामन का उपयोग ऊर्जा, दूरसंचार, परिवहन और विनिर्माण जैसे कई उद्योगों में किया जाता है। यह लेख रैखिक प्रोग्रामन के विभिन्न पहलुओं जैसे परिभाषा, सूत्र, और इस तकनीक का उपयोग करके समस्याओं को हल करने के तरीके पर प्रकाश डालता है। | ||
== परिचय == | == परिचय == | ||
रैखिक | रैखिक प्रोग्रामन, जिसे एलपी(LP) के रूप में भी संक्षिप्त किया जाता है, एक सरल विधि है जिसका उपयोग रैखिक फलन का उपयोग करके जटिल वास्तविक दुनिया के संबंधों को दर्शाने के लिए किया जाता है। इस प्रकार प्राप्त गणितीय प्रतिरूप में तत्वों का एक दूसरे के साथ रैखिक संबंध होता है। रैखिक प्रोग्रामन का उपयोग रैखिक अनुकूलन करने के लिए किया जाता है ताकि सर्वोत्तम परिणाम प्राप्त किया जा सके। | ||
== | == परिभाषा == | ||
रैखिक | रैखिक प्रोग्रामन को एक ऐसी तकनीक के रूप में परिभाषित किया जा सकता है जिसका उपयोग किसी रैखिक फलन को अनुकूलित करने के लिए किया जाता है ताकि सर्वोत्तम परिणाम प्राप्त किया जा सके। इस रैखिक फलन या उद्देश्य फलन में रैखिक समानता और असमानता बाधाएँ उपस्थित हैं। हम उद्देश्य फलन को न्यूनतम या अधिकतम करके सर्वोत्तम परिणाम प्राप्त करते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
मान लीजिए कि एक डाकिया को डाकघर (A पर स्थित) से एक दिन में 6 पत्र अलग-अलग घरों (U, V, W, Y, Z) तक पहुँचाने हैं। घरों के बीच की दूरी चित्र में दी गई रेखाओं पर दर्शाई गई है। यदि डाकिया सबसे छोटा रास्ता ढूँढना चाहता है जिससे वह पत्र पहुँचाने के साथ-साथ ईंधन की बचत भी कर सके तो यह एक रैखिक | मान लीजिए कि एक डाकिया को डाकघर (<math>A</math> पर स्थित) से एक दिन में 6 पत्र अलग-अलग घरों <math>(U, V, W, Y, Z)</math> तक पहुँचाने हैं। घरों के बीच की दूरी चित्र में दी गई रेखाओं पर दर्शाई गई है। यदि डाकिया सबसे छोटा रास्ता ढूँढना चाहता है जिससे वह पत्र पहुँचाने के साथ-साथ ईंधन की बचत भी कर सके तो यह एक रैखिक प्रोग्रामन समस्या बन जाती है। इस प्रकार, LP का उपयोग इष्टतम समाधान प्राप्त करने के लिए किया जाएगा जो इस उदाहरण में सबसे छोटा रास्ता होगा। | ||
== सूत्र == | == रैखिक प्रोग्रामन के सूत्र == | ||
एक रैखिक | एक रैखिक प्रोग्रामन समस्या में निर्णय चर, एक उद्देश्य फलन , बाधाएँ और गैर-नकारात्मक प्रतिबंध उपस्थित होंगे। निर्णय चर, <math>x</math> और <math>y</math>, LP समस्या के आउटपुट को तय करते हैं और अंतिम समाधान का प्रतिनिधित्व करते हैं। उद्देश्य फलन , <math>Z</math>, रैखिक फलन है जिसे समाधान प्राप्त करने के लिए अनुकूलित (अधिकतम या न्यूनतम) किया जाना चाहिए। बाधाएँ वे प्रतिबंध हैं जो निर्णय चर पर उनके मूल्य को सीमित करने के लिए लगाए जाते हैं। निर्णय चर का हमेशा एक गैर-नकारात्मक मान होना चाहिए जो गैर-नकारात्मक प्रतिबंधों द्वारा दिया जाता है। एक रैखिक प्रोग्रामन समस्या का सामान्य सूत्र नीचे दिया गया है: | ||
''' | '''वस्तुनिष्ठ फलन :''' <math>Z = ax + by</math> | ||
''' | '''प्रतिबंध:''' <math>cx + dy \leq e, fx + gy \leq h </math> The inequalities can also be " <math>\geq</math>" | ||
''' | '''गैर-नकारात्मक प्रतिबंध:''' <math>x \geq 0, y \geq 0</math> | ||
== रैखिक | == रैखिक प्रोग्रामन के अनुप्रयोग == | ||
रैखिक | रैखिक प्रोग्रामन का उपयोग कई वास्तविक दुनिया के अनुप्रयोगों में किया जाता है। इसका उपयोग वास्तविक दुनिया के रिश्तों को दर्शाने के लिए गणितीय प्रतिरूप बनाने के आधार के रूप में किया जाता है। रैखिक प्रोग्रामन के कुछ अनुप्रयोग नीचे सूचीबद्ध हैं: | ||
* उत्पादन की योजना बनाने और शेड्यूल करने के लिए विनिर्माण कंपनियाँ रैखिक | * उत्पादन की योजना बनाने और शेड्यूल करने के लिए विनिर्माण कंपनियाँ रैखिक प्रोग्रामन का व्यापक उपयोग करती हैं। | ||
* डिलीवरी सेवाएँ समय और ईंधन की खपत को कम करने के लिए सबसे छोटा रास्ता तय करने के लिए रैखिक | * डिलीवरी सेवाएँ समय और ईंधन की खपत को कम करने के लिए सबसे छोटा रास्ता तय करने के लिए रैखिक प्रोग्रामन का उपयोग करती हैं। | ||
* वित्तीय संस्थान ग्राहकों को | * वित्तीय संस्थान ग्राहकों को प्रस्तुत किए जा सकने वाले वित्तीय उत्पादों के पोर्टफोलियो को निर्धारित करने के लिए रैखिक प्रोग्रामन का उपयोग करते हैं। | ||
[[Category:रैखिक प्रोग्रामन]] | [[Category:रैखिक प्रोग्रामन]] | ||
[[Category:गणित]] | [[Category:गणित]] | ||
[[Category:कक्षा-12]] | [[Category:कक्षा-12]] |
Revision as of 12:27, 16 December 2024
रैखिक प्रोग्रामन एक ऐसी प्रक्रिया है जिसका उपयोग रैखिक फलन के सर्वोत्तम परिणाम को निर्धारित करने के लिए किया जाता है। यह कुछ सरल धारणाएँ बनाकर रैखिक अनुकूलन करने का सबसे अच्छा उपाय है। रैखिक फलन को उद्देश्य फलन के रूप में जाना जाता है। वास्तविक दुनिया के संबंध बेहद जटिल हो सकते हैं। हालाँकि, रैखिक प्रोग्रामन का उपयोग ऐसे संबंधों को दर्शाने के लिए किया जा सकता है, जिससे उनका विश्लेषण करना आसान हो जाता है।
रैखिक प्रोग्रामन का उपयोग ऊर्जा, दूरसंचार, परिवहन और विनिर्माण जैसे कई उद्योगों में किया जाता है। यह लेख रैखिक प्रोग्रामन के विभिन्न पहलुओं जैसे परिभाषा, सूत्र, और इस तकनीक का उपयोग करके समस्याओं को हल करने के तरीके पर प्रकाश डालता है।
परिचय
रैखिक प्रोग्रामन, जिसे एलपी(LP) के रूप में भी संक्षिप्त किया जाता है, एक सरल विधि है जिसका उपयोग रैखिक फलन का उपयोग करके जटिल वास्तविक दुनिया के संबंधों को दर्शाने के लिए किया जाता है। इस प्रकार प्राप्त गणितीय प्रतिरूप में तत्वों का एक दूसरे के साथ रैखिक संबंध होता है। रैखिक प्रोग्रामन का उपयोग रैखिक अनुकूलन करने के लिए किया जाता है ताकि सर्वोत्तम परिणाम प्राप्त किया जा सके।
परिभाषा
रैखिक प्रोग्रामन को एक ऐसी तकनीक के रूप में परिभाषित किया जा सकता है जिसका उपयोग किसी रैखिक फलन को अनुकूलित करने के लिए किया जाता है ताकि सर्वोत्तम परिणाम प्राप्त किया जा सके। इस रैखिक फलन या उद्देश्य फलन में रैखिक समानता और असमानता बाधाएँ उपस्थित हैं। हम उद्देश्य फलन को न्यूनतम या अधिकतम करके सर्वोत्तम परिणाम प्राप्त करते हैं।
उदाहरण
मान लीजिए कि एक डाकिया को डाकघर ( पर स्थित) से एक दिन में 6 पत्र अलग-अलग घरों तक पहुँचाने हैं। घरों के बीच की दूरी चित्र में दी गई रेखाओं पर दर्शाई गई है। यदि डाकिया सबसे छोटा रास्ता ढूँढना चाहता है जिससे वह पत्र पहुँचाने के साथ-साथ ईंधन की बचत भी कर सके तो यह एक रैखिक प्रोग्रामन समस्या बन जाती है। इस प्रकार, LP का उपयोग इष्टतम समाधान प्राप्त करने के लिए किया जाएगा जो इस उदाहरण में सबसे छोटा रास्ता होगा।
रैखिक प्रोग्रामन के सूत्र
एक रैखिक प्रोग्रामन समस्या में निर्णय चर, एक उद्देश्य फलन , बाधाएँ और गैर-नकारात्मक प्रतिबंध उपस्थित होंगे। निर्णय चर, और , LP समस्या के आउटपुट को तय करते हैं और अंतिम समाधान का प्रतिनिधित्व करते हैं। उद्देश्य फलन , , रैखिक फलन है जिसे समाधान प्राप्त करने के लिए अनुकूलित (अधिकतम या न्यूनतम) किया जाना चाहिए। बाधाएँ वे प्रतिबंध हैं जो निर्णय चर पर उनके मूल्य को सीमित करने के लिए लगाए जाते हैं। निर्णय चर का हमेशा एक गैर-नकारात्मक मान होना चाहिए जो गैर-नकारात्मक प्रतिबंधों द्वारा दिया जाता है। एक रैखिक प्रोग्रामन समस्या का सामान्य सूत्र नीचे दिया गया है:
वस्तुनिष्ठ फलन :
प्रतिबंध: The inequalities can also be " "
गैर-नकारात्मक प्रतिबंध:
रैखिक प्रोग्रामन के अनुप्रयोग
रैखिक प्रोग्रामन का उपयोग कई वास्तविक दुनिया के अनुप्रयोगों में किया जाता है। इसका उपयोग वास्तविक दुनिया के रिश्तों को दर्शाने के लिए गणितीय प्रतिरूप बनाने के आधार के रूप में किया जाता है। रैखिक प्रोग्रामन के कुछ अनुप्रयोग नीचे सूचीबद्ध हैं:
- उत्पादन की योजना बनाने और शेड्यूल करने के लिए विनिर्माण कंपनियाँ रैखिक प्रोग्रामन का व्यापक उपयोग करती हैं।
- डिलीवरी सेवाएँ समय और ईंधन की खपत को कम करने के लिए सबसे छोटा रास्ता तय करने के लिए रैखिक प्रोग्रामन का उपयोग करती हैं।
- वित्तीय संस्थान ग्राहकों को प्रस्तुत किए जा सकने वाले वित्तीय उत्पादों के पोर्टफोलियो को निर्धारित करने के लिए रैखिक प्रोग्रामन का उपयोग करते हैं।