बर्नूली का सिद्धांत

From Vidyalayawiki

Revision as of 11:16, 3 August 2023 by Sarika (talk | contribs)

Listen

Bernoulli's Principle

बर्नूली का सिद्धांत द्रव गतिकी में एक मौलिक अवधारणा है जो द्रव प्रवाह की गति और उसके दबाव के बीच संबंध का वर्णन करता है। इसमें कहा गया है कि एक असंपीड्य द्रव के स्थिर प्रवाह के भीतर, द्रव के वेग में वृद्धि के साथ उसके दबाव में कमी होती है, और इसके विपरीत। दूसरे शब्दों में, सिद्धांत बताता है कि जैसे-जैसे द्रव की गति बढ़ती है, द्रव द्वारा डाला गया दबाव कम होता है, और जब गति कम होती है, तो दबाव बढ़ जाता है।

बर्नूली के सिद्धांत को द्रव प्रवाह में ऊर्जा के संरक्षण पर विचार करके समझा जा सकता है। सिद्धांत के अनुसार, किसी धारा रेखा में बहने वाले द्रव की कुल ऊर्जा उस धारा रेखा के साथ स्थिर रहती है। इस ऊर्जा में तीन घटक होते हैं: गतिज ऊर्जा (द्रव के वेग के कारण), स्थितिज ऊर्जा (द्रव की एक संदर्भ बिंदु से ऊपर की ऊंचाई के कारण), और दबाव ऊर्जा (द्रव के दबाव के कारण)।

बर्नूली के सिद्धांत के गणितीय रूप को इस प्रकार व्यक्त किया जा सकता है:

जहाँ:

   द्रव द्वारा डाला गया दबाव है,

   द्रव का घनत्व है,

   द्रव का वेग है,

   गुरुत्वाकर्षण के कारण त्वरण है, और

   संदर्भ बिंदु के ऊपर द्रव की ऊंचाई है।

इस समीकरण को बर्नूली के समीकरण के रूप में जाना जाता है और एक द्रव प्रवाह में धारा रेखा के साथ ऊर्जा के संरक्षण का वर्णन करता है। यह दर्शाता है कि जैसे-जैसे द्रव की गति बढ़ती है ( पद बढ़ता है), या तो दाब ( पद) या ऊँचाई ( पद) घटनी चाहिए ताकि एक स्थिर कुल ऊर्जा बनी रहे।

बर्नूलीके सिद्धांत के दैनिक जीवन और इंजीनियरिंग में विभिन्न अनुप्रयोग हैं। उदाहरण के लिए:

   हवाई जहाज के पंख: एक हवाई जहाज के पंख के आकार को ऊपरी सतह पर तेज वायु प्रवाह बनाने के लिए डिज़ाइन किया गया है, जिसके परिणामस्वरूप पंख के नीचे धीमी वायु प्रवाह की तुलना में कम दबाव होता है। यह दबाव अंतर लिफ्ट उत्पन्न करता है, जिससे हवाई जहाज उड़ सकता है।

   वेंटुरी प्रभाव: वेंटुरी प्रभाव दबाव में कमी की व्याख्या करने के लिए बर्नूलीके सिद्धांत का उपयोग करता है जो तब होता है जब एक पाइप के एक संकुचित खंड के माध्यम से द्रव बहता है। यह सिद्धांत कार्बोरेटर, एटमाइज़र और एस्पिरेटर जैसे अनुप्रयोगों में कार्यरत है।

   पवन सुरंग परीक्षण: बर्नूलीका सिद्धांत वस्तु के चारों ओर वायु प्रवाह के दबाव और वेग में परिवर्तन का अध्ययन करके वस्तुओं के वायुगतिकी का विश्लेषण और अनुकूलन करने में मदद करता है।

यह ध्यान देने योग्य है कि बर्नूलीका सिद्धांत एक आदर्श तरल मानता है जिसमें कोई चिपचिपाहट या अन्य जटिल कारक नहीं होते हैं। वास्तविक दुनिया की स्थितियों में, चिपचिपाहट, विक्षोभ और संपीड्यता जैसे अतिरिक्त कारक तरल पदार्थों के व्यवहार को प्रभावित कर सकते हैं।