उत्क्रमणीय इंजन

From Vidyalayawiki

Revision as of 17:21, 6 July 2023 by Vinamra (talk | contribs)

Listen

Reversible engine

भौतिकी में, एक प्रतिवर्ती इंजन एक आदर्श ताप इंजन को संदर्भित करता है जो एक प्रतिवर्ती प्रक्रिया के माध्यम से संचालित होता है। ऊष्मा इंजन एक उपकरण है जो तापीय ऊर्जा को यांत्रिक कार्य में परिवर्तित करता है। प्रतिवर्ती इंजन की अवधारणा को समझने से आपको वास्तविक दुनिया के इंजनों के संचालन के पीछे के मूलभूत सिद्धांतों को समझने में मदद मिलेगी।

एक प्रतिवर्ती इंजन एक सैद्धांतिक निर्माण है जो थर्मोडायनामिक्स के सिद्धांतों का पालन करता है और एक आदर्श तरीके से संचालित होता है। एक प्रतिवर्ती इंजन की मुख्य विशेषता यह है कि इसे दोनों दिशाओं में संचालित किया जा सकता है: यह ऊष्मा इंजन के रूप में कार्य कर सकता है, ऊष्मा ऊर्जा को यांत्रिक कार्य में परिवर्तित कर सकता है, या यह रेफ्रिजरेटर या ऊष्मा पंप के रूप में कार्य कर सकता है, कम तापमान से ऊष्मा को अवशोषित कर सकता है। जलाशय और इसे उच्च तापमान वाले जलाशय में स्थानांतरित करना।

अवधारणा को बेहतर ढंग से समझने के लिए, आइए एक सरल उदाहरण पर विचार करें: कार्नोट इंजन। कार्नोट इंजन एक आदर्श प्रतिवर्ती इंजन है जिसका उपयोग अक्सर सैद्धांतिक चर्चाओं में किया जाता है। यह दो ताप भंडारों के बीच संचालित होता है, एक उच्च तापमान (Th) पर और दूसरा कम तापमान (Tc) पर, Th > Tc के साथ।

कार्नोट इंजन के संचालन के दौरान, काम करने वाला पदार्थ, जो गैस या तरल हो सकता है, प्रतिवर्ती प्रक्रियाओं की एक श्रृंखला से गुजरता है। इन प्रक्रियाओं में इज़ोटेर्मल विस्तार, रुद्धोष्म विस्तार, इज़ोटेर्मल संपीड़न और रुद्धोष्म संपीड़न शामिल हैं।

यहां कार्नोट इंजन में शामिल चरणों का सरलीकृत विवरण दिया गया है:

   इज़ोटेर्मल विस्तार: कार्यशील पदार्थ इज़ोटेर्मल रूप से विस्तार करते हुए उच्च तापमान वाले जलाशय से गर्मी को अवशोषित करता है। इसका मतलब यह है कि इस प्रक्रिया के दौरान कार्यशील पदार्थ का तापमान स्थिर रहता है।

   रुद्धोष्म विस्तार: कार्यशील पदार्थ का विस्तार जारी रहता है, लेकिन अपने परिवेश के साथ ऊष्मा का आदान-प्रदान किए बिना। इस प्रक्रिया से पदार्थ के तापमान और दबाव में कमी आती है।

रुद्धोष्म संपीड़न: कार्यशील पदार्थ को और अधिक संपीड़ित किया जाता है, लेकिन अपने परिवेश के साथ गर्मी का आदान-प्रदान किए बिना। इस प्रक्रिया से पदार्थ का तापमान और दबाव बढ़ जाता है।

इन चार चरणों को पूरा करके, कार्नोट इंजन एक चक्र पूरा करता है, और फिर यह प्रक्रिया को दोहरा सकता है। इंजन उच्च तापमान वाले भंडार से ऊर्जा निकालता है और इसके एक हिस्से को यांत्रिक कार्य में परिवर्तित करता है, जबकि शेष ऊर्जा को कम तापमान वाले भंडार में स्थानांतरित कर दिया जाता है।

दो जलाशयों के तापमान को देखते हुए, कार्नोट इंजन को सबसे कुशल ताप इंजन माना जाता है। इसकी दक्षता, जिसे कार्नोट दक्षता के रूप में जाना जाता है, को कार्य आउटपुट और ताप इनपुट के अनुपात के रूप में परिभाषित किया गया है। कार्नोट इंजन की दक्षता पूरी तरह से दो जलाशयों के तापमान पर निर्भर करती है और समीकरण द्वारा दी जाती है:

जहां ठंडे जलाशय का पूर्ण तापमान है, और गर्म जलाशय का पूर्ण तापमान है।

यह ध्यान रखना महत्वपूर्ण है कि वास्तविक दुनिया के इंजन, जैसे आंतरिक दहन इंजन या भाप टरबाइन, घर्षण, गर्मी हस्तांतरण हानि और अन्य अक्षमताओं जैसे विभिन्न कारकों के कारण पूरी तरह से प्रतिवर्ती इंजन के रूप में काम नहीं करते हैं। हालाँकि, प्रतिवर्ती इंजन, विशेष रूप से कार्नोट इंजन की अवधारणा, हमें ऊष्मा इंजनों की मूलभूत सीमाओं और सिद्धांतों को समझने में मदद करती है।