उत्तल दर्पण
Listen
Convex Mirror
एक अवतल दर्पण कटोरे के अंदर की तरह अंदर की ओर मुड़ता है। जब प्रकाश को प्रतिबिंबित करने की बात आती है तो इन दर्पणों में कुछ वाकई दिलचस्प गुण होते हैं।
महत्वपूर्ण शर्तें:
वक्रता केंद्र (सी): एक बड़े वृत्त के बारे में सोचें जो दर्पण के वक्र पर बिल्कुल फिट बैठता है। इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।
शीर्ष (V): दर्पण की घुमावदार सतह का मध्यबिंदु।
फोकस (एफ): अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।
गणितीय समीकरण:
दो समीकरण हमें यह समझने में मदद करेंगे कि अवतल दर्पण कैसे काम करते हैं: दर्पण समीकरण और आवर्धन समीकरण।
दर्पण समीकरण:
अवतल दर्पणों के लिए दर्पण समीकरण इस प्रकार है:
f दर्पण की फोकल लंबाई है (यह मापता है कि दर्पण कितनी तीव्रता से प्रकाश को मोड़ता है)।
v वह दूरी है जहां छवि बनती है (वास्तविक छवियों के लिए सकारात्मक, आभासी छवियों के लिए नकारात्मक)।
u दर्पण से वस्तु की दूरी है (यदि वस्तु दर्पण के सामने है तो सकारात्मक, यदि पीछे है तो नकारात्मक)।
अवतल दर्पणों के लिए फोकल लंबाई (f) को सकारात्मक माना जाता है।