प्रायिकता का गुणन नियम

From Vidyalayawiki

Revision as of 13:50, 18 December 2024 by Mani (talk | contribs) (added content)

प्रायिकता का गुणन नियम दो दी गई घटनाओं के बीच की स्थिति को परिभाषित करता है। नमूना स्थान S से जुड़ी दो घटनाओं, A और B के लिए, A∩B उन घटनाओं को दर्शाता है जिनमें दोनों घटनाएँ घटित हुई हैं। इसे प्रायिकता में गुणन प्रमेय के रूप में भी जाना जाता है। दो दी गई घटनाओं की संभावनाओं को गुणा करके उन घटनाओं के एक साथ घटित होने की संभावना दी जाती है।

प्रायिकता का गुणन नियम क्या है?

प्रायिकता का गुणन नियम बताता है कि जब भी कोई घटना दो अन्य घटनाओं का प्रतिच्छेदन होती है, अर्थात, घटनाएँ A और B एक साथ घटित होनी चाहिए। तब, P(A और B)=P(A)⋅P(B)। सेट A∩B घटनाओं A और B की एक साथ होने वाली घटना को दर्शाता है, अर्थात वह सेट जिसमें घटनाएँ A और घटना B दोनों घटित हुई हैं। इवेंट A∩B को AB के रूप में लिखा जा सकता है। इवेंट AB की प्रायिकता सशर्त प्रायिकता के गुणों का उपयोग करके प्राप्त की जाती है, जो P(A ∩ B) = P(A) P(B | A) के रूप में दी गई है।


आश्रित घटनाओं के लिए प्रायिकता का गुणन नियम

यदि एक घटना का परिणाम दूसरी घटना के परिणाम को प्रभावित करता है, तो उन घटनाओं को आश्रित घटनाएँ कहा जाता है। कभी-कभी, पहली घटना का घटित होना दूसरी घटना की प्रायिकता को प्रभावित करता है। प्रमेय से, हमारे पास है, P(A ∩ B) = P(A) P(B | A), जहाँ A और B स्वतंत्र घटनाएँ हैं।

स्वतंत्र घटनाओं के लिए प्रायिकता का गुणन नियम

यदि एक घटना का परिणाम किसी अन्य घटना के परिणाम को प्रभावित नहीं करता है, तो उन घटनाओं को स्वतंत्र घटनाएँ कहा जाता है। आश्रित घटनाओं के लिए प्रायिकता के गुणन नियम को स्वतंत्र घटनाओं के लिए बढ़ाया जा सकता है। हमारे पास है, P(A ∩ B) = P(A) P(B | A), इसलिए यदि घटनाएँ A और B स्वतंत्र हैं, तो, P(B | A) = P(B), और इस प्रकार, उपरोक्त प्रमेय P(A ∩ B) = P(A) P(B) तक कम हो जाता है। इसका मतलब है कि इन दोनों के एक साथ होने की संभावना उनकी संबंधित संभावनाओं का गुणनफल है।

प्रायिकता का गुणन नियम सूत्र

प्रायिकता का गुणन नियम बताता है कि घटनाओं, A और B, दोनों के एक साथ घटित होने की प्रायिकता, B के घटित होने की प्रायिकता के बराबर होती है, जो कि A के घटित होने की सशर्त प्रायिकता से गुणा की जाती है, बशर्ते कि B घटित हो।

गुणन नियम को P(A∩B)=P(B)⋅P(A|B) के रूप में लिखा जा सकता है।

प्रायिकता का सामान्य गुणन नियम एक सरल तरीके से प्राप्त किया जा सकता है, बस सशर्त प्रायिकता समीकरण के दोनों पक्षों को हर से गुणा करना होता है।


प्रायिकता प्रमाण का गुणन नियम

दो घटनाओं, A और B के प्रतिच्छेदन की प्रायिकता सशर्त प्रायिकता के गुणों का उपयोग करके प्राप्त की जाती है।

हम जानते हैं कि घटना A की सशर्त प्रायिकता, बशर्ते कि B घटित हुई हो, P(A|B) द्वारा निरूपित की जाती है और इसे इस प्रकार दर्शाया जाता है: P(A|B) = P(A∩B)P(B), जहाँ, P(B)≠0. P(A∩B) = P(B)×P(A|B) …….(1)

P(B|A) = P(B∩A)P(A),जहाँ, P(A) ≠ 0. P(B∩A) = P(A)×P(B|A)

चूँकि, P(A∩B) = P(B∩A), P(A∩B) = P(A)×P(B|A) ……..(2)

(1) और (2) से, P(A∩B) = P(B)×P(A|B) = P(A)×P(B|A), P(A) ≠ 0,P(B) ≠ 0. इसलिए, प्राप्त परिणाम को प्रायिकता के गुणन नियम के रूप में जाना जाता है।

स्वतंत्र घटनाओं A और B के लिए, P(B|A) = P(B). समीकरण (2) को इस प्रकार संशोधित किया जा सकता है, P(A∩B) = P(B) × P(A)

n घटनाओं के लिए प्रायिकता का गुणन नियम

अब, n घटनाओं के लिए प्रायिकता का गुणन नियम प्राप्त करने के लिए, n घटनाओं A1, A2, … , An के लिए प्रायिकता के गुणन सिद्धांत का n घटनाओं तक विस्तार, हमारे पास P(A1 ∩ A2 ∩ … ∩ An) = P(A1) P(A2 | A1) P(A3 | A1 ∩ A2) … × P(An |A1 ∩ A2 ∩ … ∩ An-1)

n स्वतंत्र घटनाओं के लिए, गुणन प्रमेय P(A1 ∩ A2 ∩ … ∩ An) = P(A1) P(A2) … P(An) तक कम हो जाता है।