त्रिभुज के गुण

From Vidyalayawiki

Revision as of 10:04, 18 September 2024 by Mani (talk | contribs)

Theorem 1: Angles opposite to equal sides of an isosceles triangle are equal

Fig 1 - Isosceles triangle
Fig 1 - Isosceles triangle

Proof: Consider an isosceles triangle shown in fig 1 where .

We need to prove that the angles opposite to the sides and are equal, that is,

We first draw a bisector of and name it as .

Now in and we have,

                                                      (Given)

                               (By construction)

                                                           (Common to both)

Thus,                             (By SAS congruence criterion)

So,                                     (By CPCT)

Hence proved.


Theorem 2: The sides opposite to equal angles of a triangle are equal.

Proof: In a triangle shown in fig 1, base angles are equal and we need to prove that or is an isosceles triangle.

Construct a bisector which meets the side at right angles.

Now in and we have,

                                       (By construction)

                                                      (Common side)

                                (By construction)

Thus,                                   (By ASA congruence criterion)

So,                                             (By CPCT)

Or is isosceles.