वास्तविक फलनों का बीजगणित

From Vidyalayawiki

Revision as of 06:39, 8 November 2024 by Mani (talk | contribs) (added content)

2.4.2 वास्तविक फलनों का बीजगणित (Algebra of real functions) इस अनुच्छेद में, हम सीखेंगे कि किस प्रकार दो वास्तविक फलनों को जोड़ा जाता है, एक वास्तविक फलन को दूसरे में से घटाया जाता है, एक वास्तविक फलन को किसी अदिश (यहाँ आदिश का अभिप्राय वास्तविक संख्या से है) से गुणा किया जाता है, दो वास्तविक फलनों का गुणा किया जाता है तथा एक वास्तविक फलन को दूसरे से भाग दिया जाता है।

XR तथा g XR कोई दो

(i) दो वास्तविक फलनों का योग मान लीजिए कि वास्तविक फलन हैं, जहाँ X CR तब हम (f + g): XR को सभी EX के लिए,

(f + g ) (x) = f (x) + g (x) द्वारा परिभाषित करते हैं।

+

(ii) एक वास्तविक फलन में से दूसरे को घटाना मान लीजिए कि f: X→ R तथा g: X → R कोई दो वास्तविक फलन हैं, जहाँ XCR तब हम (f g) : XR को सभी * EX के लिए (/-g) (x) = f(x) - 8 (x), द्वारा परिभाषित करते हैं।

(iii) एक अदिश से गुणा मान लीजिए कि / : X R एक वास्तविक मान फलन है तथा एक अदिश है। यहाँ अदिश से हमारा अभिप्राय किसी वास्तविक संख्या से है। तब गुणनफल af, X से R में एक फलन है, जो (af) (x) = a f (x),xe X से परिभाषित होता है।

(iv) दो वास्तविक फलनों का गुणन दो वास्तविक फलनों f XR तथा g: X→R का गुणनफल (या गुणा) एक फलन fg: X R है, जो सभी (fg) (x) = f(x) g(x), x ∈ X द्वारा परिभाषित है। इसे बिंदुश: गुणन भी कहते हैं।

(v) दो वास्तविक फलनों का भागफल मान लीजिए कि f तथा g XR द्वारा परिभाषित,

दो वास्तविक फलन हैं, जहाँ XCRf का g से भागफल, जिसे

f

g

से निरूपित करते हैं, एक फलन

है, जो सभीxe X जहाँ g(x) = 0, के लिए,

((t) = f(x) g(x)

द्वारा परिभाषित है।

उदाहरण 16 मान लीजिए कि f(x) =

तथा g (x) = 2x +

वास्तविक फलन हैं।

(f + g) (x), (f-g) (x), (fg) (x),

ज्ञात कीजिए।


हल स्पष्टतः

(f+g) (x) = x2+2x+1, (f−g) (x) = x2 - 2x-1,

(fg) (x) = x2 (2x+1

(x) +x,

=

x #

8

2x+1

2

उदाहरण 17 मान लीजिए कि f(x) = VX तथा g(x) = x ॠणेत्तर वास्तविक संख्याओं के लिए

परिभाषित दो फलन हैं, तो ( + g ) (x), (f - g) (x) (fg) (x) और

8

(x) ज्ञात कीजिए ।

हल यहाँ हमें निम्नलिखित परिणाम मिलते हैं:

(f+g) (x) = √x+x, (f− g) (x) = √x

-

-x.

(fg)

(8) x = √x(x)=x2 + (4)∞) = √x xxx0

2,

X