परिसर
परिसर आँकडों के अधिकतम मान और निम्नतम मान के बीच का अंतर है। यह आँकडों के प्रसार को जानने में सहायता करता है।
किसी दिए गए आँकडों के समुच्चय के लिए सांख्यिकी में परिसर अधिकतम और निम्नतम मानों के बीच का अंतर है।
उदाहरण के लिए, यदि दिया गया आँकडों के समुच्चय है, तो परिसर होगी।
इस प्रकार, परिसर को अधिकतम अवलोकन और निम्नतम अवलोकन के बीच के अंतर के रूप में भी परिभाषित किया जा सकता है। प्राप्त परिणाम को अवलोकन की परिसर कहा जाता है। सांख्यिकी में परिसर अवलोकनों के प्रसार का प्रतिनिधित्व करती है।
सांख्यिकी में परिसर
सांख्यिकी में परिसर ज्ञात करने के लिए, हमें दिए गए मानों या आँकडों के समुच्चय या प्रेक्षणों के समुच्चय को आरोही क्रम में व्यवस्थित करना होगा। इसका अर्थ है, सबसे पहले प्रेक्षणों को सबसे कम से लेकर सबसे अधिक मान तक लिखें। अब, हमें प्रेक्षणों की परिसर ज्ञात करने के लिए सूत्र का उपयोग करना होगा।
परिसर सूत्र
परिसर = अधिकतम मान – न्यूनतम मान
या
परिसर = अधिकतम अवलोकन – न्यूनतम अवलोकन
या
परिसर = अधिकतम मान – न्यूनतम मान
सांख्यिकी में परिसर का सूत्र मात्र अधिकतम और निम्नतम मानों के बीच के अंतर से दिया जा सकता है।
परिसर की सीमाएँ
परिसर ज्ञात करने के लिए सबसे सुविधाजनक मापीय(मीट्रिक) है। परंतु इसकी निम्नलिखित सीमाएँ हैं।
- परिसर हमें आँकडों बिंदुओं की संख्या नहीं बताती है।
- परिसर का उपयोग माध्य, माध्यिका या बहुलक ज्ञात करने के लिए नहीं किया जा सकता है।
- परिसर चरम मानों (आउटलेयर) से प्रभावित होती है।
- परिसर का उपयोग विवृतांत(ओपन-एंडेड) वितरण के लिए नहीं किया जा सकता है।
सांख्यिकी में समांतर माध्य और सीमा
सांख्यिकी में, आँकडों के समुच्चय को साधारणतः समांतर माध्य द्वारा दर्शाया जाता है। कभी-कभी, समांतर माध्य को औसत या मात्र 'माध्य' भी कहा जाता है।
मूल रूप से, माध्य दिए गए आँकडों का केंद्रीय मान होता है। आँकडों के समुच्चय का समांतर माध्य ज्ञात करने के लिए, हमें के समुच्चय के सभी मानों को जोड़ना होगा और फिर परिणामी मान को कुल मानों की संख्या से विभाजित करना होगा।
समांतर माध्य = (सभी प्रेक्षणों का योग)/(प्रेक्षणों की कुल संख्या)
उदाहरण
आइए उन प्रेक्षणों का समांतर माध्य ज्ञात करें जिनके लिए हमने उपरोक्त उदाहरणों में श्रेणी का मूल्यांकन किया है।
उदाहरण 1: आँकडों के समुच्चय का माध्य ज्ञात करें: ।
समाधान: माध्य ज्ञात करने के लिए, हमें पहले सभी दिए गए मानों को जोड़ना होगा।
प्रेक्षणों का योग
प्रेक्षणों की कुल संख्या
इसलिए, प्रेक्षणों का माध्य है:
माध्य = (सभी प्रेक्षणों का योग)/(प्रेक्षणों की कुल संख्या)
माध्य
इसलिए, आवश्यक समांतर माध्य है।
उदाहरण 2: गणित में छात्रों के अंक निम्नलिखित हैं: । अंकों का माध्य ज्ञात कीजिए।
समाधान: दिया गया है, छात्रों के अंक हैं:
माध्य = (सभी प्रेक्षणों का योग)/(प्रेक्षणों की कुल संख्या)
इस प्रकार,
प्रेक्षणों का योग
कुल प्रेक्षण
इसलिए,
समांतर माध्य
इसलिए, अपेक्षित माध्य है।