शून्य सदिश

From Vidyalayawiki

Revision as of 13:00, 3 August 2023 by Sarika (talk | contribs)

Listen

Null Vector

भौतिकी में, शून्य सदिश, जिसे शून्य सदिश के रूप में भी जाना जाता है, एक सदिश है जिसका परिमाण शून्य होता है। दूसरे शब्दों में, यह एक वेक्टर है जिसकी कोई दिशा नहीं है और कोई लंबाई नहीं है।

सदिश राशियाँ वे मात्राएँ होती हैं जिनमें परिमाण (आकार) और दिशा दोनों होते हैं। उन्हें अक्सर तीरों के रूप में दर्शाया जाता है, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है और तीर की दिशा दिशा का प्रतिनिधित्व करती है।

एक अशक्त वेक्टर एक विशेष प्रकार का वेक्टर है जो एक मात्रा का प्रतिनिधित्व करता है जिसका कोई परिमाण नहीं है और कोई विशिष्ट दिशा नहीं है। इसे अक्सर "0" या "𝟎" के रूप में दर्शाया जाता है, यह इंगित करने के लिए कि यह एक वेक्टर है, इसके ऊपर एक तीर होता है।

अशक्त वैक्टर को समझने के लिए, आइए एक सरल उदाहरण पर विचार करें। कल्पना कीजिए कि आप स्थिर खड़े हैं, किसी भी दिशा में आगे नहीं बढ़ रहे हैं। इस मामले में, आपके शुरुआती बिंदु से आपका विस्थापन एक अशक्त वेक्टर होगा क्योंकि इसकी कोई लंबाई नहीं है (आप स्थानांतरित नहीं हुए हैं) और कोई विशिष्ट दिशा नहीं है (आप कहीं नहीं जा रहे हैं)।

इसी प्रकार, अन्य स्थितियों में, शून्य सदिश उन राशियों का प्रतिनिधित्व कर सकता है जो शून्य हैं या जिनका कोई प्रभाव नहीं है। उदाहरण के लिए, यदि आप किसी वस्तु पर एक दिशा में बल लगाते हैं और विपरीत दिशा में समान और विपरीत बल लगाते हैं, तो वस्तु पर कार्य करने वाला शुद्ध बल एक अशक्त वेक्टर होता है क्योंकि बल एक दूसरे को रद्द कर देते हैं, जिसके परिणामस्वरूप कोई समग्र बल नहीं होता है।

गणित में, शून्य सदिश रैखिक बीजगणित में भी महत्वपूर्ण हैं। इस संदर्भ में, एक अशक्त वेक्टर एक वेक्टर को संदर्भित करता है, जब एक मैट्रिक्स या परिवर्तन से गुणा किया जाता है, तो शून्य वेक्टर का उत्पादन होता है। यह रैखिक समीकरणों की एक सजातीय प्रणाली के समाधान का प्रतिनिधित्व करता है, जहां समीकरणों का कोई गैर-शून्य समाधान नहीं होता है।

संक्षेप में, एक अशक्त वेक्टर शून्य परिमाण वाला एक वेक्टर है और कोई विशिष्ट दिशा नहीं है। यह उन मात्राओं का प्रतिनिधित्व करता है जो शून्य हैं या जिनका कोई प्रभाव नहीं है। अशक्त सदिशों को समझना भौतिकी और गणित के विभिन्न क्षेत्रों में महत्वपूर्ण है, क्योंकि वे शून्य या तटस्थ मात्राओं से संबंधित समस्याओं का वर्णन करने और उन्हें हल करने में हमारी मदद करते हैं।