विनाशी व्यतिकरण

From Vidyalayawiki

Revision as of 15:55, 12 September 2023 by Vinamra (talk | contribs)

Listen

Destructive Interference

विनाशी व्यतिकरण एक ऐसी घटना है जो तब घटित होती है जब दो या दो से अधिक तरंगें अंतरिक्ष और समय में एक ही बिंदु पर मिलती हैं, और उनके आयाम इस तरह से संयोजित होते हैं कि परिणामी तरंग का आयाम किसी भी व्यक्तिगत तरंग के आयाम से छोटा होता है। दूसरे शब्दों में, यह तब होता है जब लहरें इस तरह से संरेखित होती हैं कि उनके शिखर (उच्चतम बिंदु) गर्त (निम्नतम बिंदु) के साथ मेल खाते हैं, एक दूसरे को रद्द कर देते हैं।

गणितीय प्रतिनिधित्व

विनाशी व्यतिकरण का गणितीय प्रतिनिधित्व सुपरपोजिशन के सिद्धांत पर आधारित है, जो बताता है कि एक बिंदु पर कुल विस्थापन प्रत्येक व्यक्तिगत तरंग के कारण होने वाले विस्थापन का योग है। दो तरंगों पर विचार करें:

तरंग 1:A1sin⁡(kx−ωt+ϕ1)

तरंग 2: A2​sin(kx−ωt+ϕ2​)

जहाँ:

  •   A1​ और A2 तरंगों के आयाम हैं।
  •    k तरंग संख्या है (2π/λ के बराबर, जहां λ तरंग दैर्ध्य है)।
  •    x स्थिति है.
  •    ω कोणीय आवृत्ति है।
  •    t समय है.
  •    ϕ1​ और ϕ2​ तरंगों के प्रारंभिक चरण हैं।

इन दो तरंगों के कारण किसी भी बिंदु (x,t) पर कुल विस्थापन उनके विस्थापन के योग द्वारा दिया जाता है:

A_total sin⁡(kx−ωt+ϕ_total)

जहाँ:

  •    A_total परिणामी आयाम है, जो व्यतिकरण द्वारा निर्धारित होता है।
  •    ϕ_total परिणामी चरण है, जो व्यतिकरण द्वारा भी निर्धारित होता है।

विनाशी व्यतिकरण होने के लिए, दो तरंगों के बीच चरण अंतर ऐसा होना चाहिए कि उनके शिखर गर्त के साथ संरेखित हों, जिसका अर्थ है:

ϕ2−ϕ1=(2n+1)π (जहाँ n एक पूर्णांक है)

इस मामले में, परिणामी आयाम A_total​ व्यक्तिगत आयाम A1​ और A2 के बीच का अंतर है, जिससे कम तरंग तीव्रता या अंधेरे का क्षेत्र बनता है।

महत्वपूर्ण अवधारणाएं

   विनाशी व्यतिकरण के परिणामस्वरूप उस बिंदु पर कमजोर या कम तीव्र तरंग उत्पन्न होती है जहां तरंगें ओवरलैप होती हैं।

   इसकी विशेषता तरंग शिखरों का गर्तों के साथ संरेखित होना है।

   विनाशी व्यतिकरण से व्यतिकरण विन्यास (पैटर्न) में अंधेरे क्षेत्रों का निर्माण होता है।

विनाशी व्यतिकरण का महत्व

   विनाशी व्यतिकरण तरंग प्रकाशिकी और तरंग सिद्धांत में एक मौलिक अवधारणा है, जो डबल-स्लिट व्यतिकरण विन्यास में अंधेरे फ्रिंज जैसी घटनाओं की व्याख्या करती है।

   इसमें प्रकाशिकी, ध्वनिकी और सिग्नल प्रोसेसिंग सहित विभिन्न क्षेत्रों में अनुप्रयोग हैं, जहां व्यावहारिक उद्देश्यों के लिए तरंग व्यतिकरण का उपयोग किया जाता है।

संक्षेप में

तरंग प्रकाशिकी में विनाशी व्यतिकरण तब होता है जब तरंगें इस तरह से संरेखित होती हैं कि उनके शिखर गर्त से मिलते हैं, जिसके परिणामस्वरूप ओवरलैप के बिंदु पर तरंग आयाम में कमी आती है। यह अवधारणा तरंग व्यवहार को समझने के लिए मौलिक है और व्यतिकरण घटना और भौतिकी और इंजीनियरिंग में विभिन्न अनुप्रयोगों में महत्वपूर्ण भूमिका निभाती है।