फलनों का संयोजन तथा व्युत्क्रमणीय फलन

From Vidyalayawiki

Revision as of 14:37, 1 January 2024 by Mani (talk | contribs) (content added)


भूमिका

फलनों का संयोजन और व्युत्क्रमणीय फलन गणित में मौलिक अवधारणाएँ हैं जो समीकरणों को हल करने, संबंधों का विश्लेषण करने और गणितीय प्रतिरूप के निर्माण में महत्वपूर्ण भूमिका निभाते हैं। छात्रों के लिए फलनों के घात और नम्यता को समझने के लिए इन अवधारणाओं को समझना आवश्यक है।

फलनों का संयोजन

दो फलनों और का संयोजन, जिसे द्वारा निरूपित किया जाता है, एक नया फलन है जो और के संचालन को जोड़ता है। इसे इस प्रकार परिभाषित किया गया है:

दूसरे शब्दों में, किसी मान पर का मूल्यांकन करने के लिए, हम पहले का मूल्यांकन करते हैं और फिर परिणाम को के लिए निवेश(इनपुट) के रूप में उपयोग करते हैं।

संयोजन के गुण

  1. साहचर्य नियम :
  2. तत्समक फलन : जहां तत्समक फलन का प्रतिनिधित्व करता है

संयोजन के उदाहरण

  1. मान लीजिए और , तो,
  2. मान लीजिए और , तब,

संयोजन के आलेख

फलनों के संयोजन की कल्पना करने के लिए, हम अलग-अलग फलनों के आलेख को जोड़ सकते हैं:

का रेखांकन आलेखित करें।

का रेखांकन आलेखित करें।

का आलेख प्राप्त करने के लिए, के रेखांकन से निर्गम(आउटपुट) लें और इसे के रेखांकन के लिए निवेश(इनपुट) के रूप में उपयोग करें।

प्रतिलोम फलन (व्युत्क्रमणीय फलन)

फलन का एक व्युत्क्रम फलन, जिसे द्वारा दर्शाया जाता है, एक ऐसा फलन है जो के संचालन को उलट देता है। दूसरे शब्दों में, के डोमेन में किसी भी निवेश के लिए, की सीमा में एक निर्गम उपस्थित होता है, जैसे कि

व्युत्क्रमणीय फलन के गुण

  1. प्रांत(डोमेन) और परिसर(रेंज) : का प्रांत का परिसर है, और की परिसर का प्रांत है।
  2. संयोजन: , जहां तत्समक फलन का प्रतिनिधित्व करता है

व्युत्क्रमणीय फलन ज्ञात करना