माध्य - पग-विचलन विधि

From Vidyalayawiki

Revision as of 19:57, 16 March 2024 by Mani (talk | contribs)

पग-विचलन विधि, वर्गीकृत आंकड़ों का माध्य प्राप्त करने की एक विधि है जब मान बड़े होते हैं। सांख्यिकी में माध्य तीन प्रकार के होते हैं - समांतर माध्य, ज्यामितीय माध्य और हरात्मक(हार्मोनिक) माध्य। जब आंकड़ों का मान बड़ा होता है और वर्ग चिह्नों के विचलन में सार्व गुणनखंड होते हैं, तो पग-विचलन विधि का उपयोग किया जाता है

परिभाषा

पग-विचलन विधि को बड़े मान का माध्य प्राप्त करने के लिए उपयोग की जाने वाली विधि के रूप में परिभाषित किया जा सकता है जो एक सार्व गुणनखंड द्वारा विभाज्य है। विचलन के इन मानों को सभी मानों को एक सार्व गुणनखंड से विभाजित करके छोटे मान में बदल दिया जाता है। दूसरे शब्दों में, पग-विचलन विधि का उपयोग तब किया जाता है जब कल्पित माध्य से वर्ग चिह्नों का विचलन बड़ा होता है और उन सभी का गुणनखंड एक समान होता है। पग-विचलन विधि को कल्पित विधि का विस्तार माना जाता है क्योंकि हम कल्पित विधि में प्रयुक्त विचलन सूत्र का उपयोग करते हैं

माध्य - पग-विचलन विधि सूत्र

Step Deviation of Mean =

where assumed mean

class size

midpoint of the class interval

frequency

Example: Find the mean of the following using the step-deviation method.

Class

Interval

10 - 25 2
25 - 40 3
40 - 55 7
55 - 70 6
70 - 85 6
85 - 100 6

Solution:

Class

Interval

()

()

10 - 25 2 17.5 -30 -2 -4
25 - 40 3 32.5 -15 -1 -3
40 - 55 7 47.5 0 0 0
55 - 70 6 62.5 15 1 6
70 - 85 6 77.5 30 2 12
85 - 100 6 92.5 45 3 18
Total =30 =29

Step Deviation of Mean =