Introduction to Simple Mathematical Formulae by Bhārati Kṛṣṇa Tīrtha
These are the Sūtras developed by Jagadguru Swami Śrī Bhārati Kṛṣṇa Tīrthaji Mahārāja between 1911 and 1918.
Swamiji was the Shankarāchārya of the Govardhan Math, Jagannath Puri as well as Dwaraka, Gujarat (1884-1960)[1].
Swamiji had developed set of sixteen mathematical formulae or sūtras and their sub sūtras. These single line sūtras are in Samskrita easy to understand and remember. Each sūtra can be applied to solve many different mathematical operations.
These Sūtras help to solve the 'difficult" problems or huge sums very quickly and calculations can be carried out mentally or involve one or two steps.
List Of Sūtras
Here are the list of Sūtras and Sub-Sūtras.
Sl.No. | Sūtras | Sub-Sūtras |
---|---|---|
1 | एकाधिकेन पूर्वेण
Ekādhikena Pūrveṇa |
आनुरूप्येण
Ānurūpyeṇa |
2 | निखिलं नवतश्चरमं दशतः
Nikhilaṃ Navataścaramaṃ Daśataḥ |
शिष्यते शेषसंज्ञः
Śiṣyate Śeṣasaṃjñaḥ |
3 | ऊर्ध्वतिर्यग्भ्याम्
Ūrdhvatiryagbhyām |
आद्यमाद्येनान्त्यमन्त्येन
Ādyamādyenāntyamantyena |
4 | परावर्त्य योजयेत्
Parāvartya Yojayet |
केवलैः सप्तकं गुण्यात्
Kevalaiḥ Saptakaṃ Guṇyāt |
5 | शून्यं साम्यसमुच्चये
Śūnyaṃ Sāmyasamuccaye |
वेष्टनम्
Veṣṭanam |
6 | (आनुरूप्ये) शून्यमन्यत्
(Ānurūpye) Śūnyamanyat |
यावदूनं तावदूनम्
Yāvadūnaṃ Tāvadūnam |
7 | संकलनव्यवकलनाभ्याम्
Saṃkalanavyavakalanābhyām |
यावदूनं तावदूनीकृत्य वर्गं च योजयेत्
Yāvadūnaṃ Tāvadūnīkṛtya Vargaṃ Ca Yojayet |
8 | पूरणापूरणाभ्याम्
Pūraṇāpūraṇābhyām |
अन्त्ययोर्दशकेऽपि
Antyayordaśakeʼpi |
9 | चलनकलनाभ्याम्
Calanakalanābhyām |
अन्त्ययोरेव
Antyayoreva |
10 | यावदूनम्
Yāvadūnam |
समुच्चयगुणितः
Samuccayaguṇitaḥ |
11 | व्यष्टिसमष्टिः
Vyaṣṭisamaṣṭiḥ |
लोपनस्थापनाभ्याम्
Lopanasthāpanābhyām |
12 | शेषाण्यङ्केन चरमेण
Śeṣāṇyaṅkena Carameṇa |
विलोकनम्
Vilokanam |
13 | सोपान्त्यद्वयमन्त्यम्
Sopāntyadvayamantyam |
गुणितसमुच्चयः समुच्चयगुणितः
Guṇitasamuccayaḥ Samuccayaguṇitaḥ |
14 | एकन्यूनेन पूर्वेण
Ekanyūnena Pūrveṇa |
|
15 | गुणितसमुच्चयः
Guṇitasamuccayaḥ |
|
16 | गुणकसमुच्चयः
Guṇakasamuccayaḥ |
References
- ↑ Singhal, Vandana (2007). Vedic Mathematics For All Ages - A Beginners' Guide. Delhi: Motilal Banarsidass. pp. XV. ISBN 978-81-208-3230-5.