Introduction to Simple Mathematical Formulae by Bhārati Kṛṣṇa Tīrtha

From Vidyalayawiki

Revision as of 13:12, 28 April 2023 by Ramamurthy (talk | contribs) (Created page with "These are the Sūtras developed by Jagadguru Swami Śrī Bhārati Kṛṣṇa Tīrthaji Mahārāja between 1911 and 1918. Swamiji was the Shankarāchārya of the Govardhan Math, Jagannath Puri as well as Dwaraka, Gujarat (1884-1960)<ref>{{Cite book|last=Singhal|first=Vandana|title=Vedic Mathematics For All Ages - A Beginners' Guide|publisher=Motilal Banarsidass|year=2007|isbn=978-81-208-3230-5|location=Delhi|pages=XV}}</ref>. Swamiji had developed set of sixteen mathem...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

These are the Sūtras developed by Jagadguru Swami Śrī Bhārati Kṛṣṇa Tīrthaji Mahārāja between 1911 and 1918.

Swamiji was the Shankarāchārya of the Govardhan Math, Jagannath Puri as well as Dwaraka, Gujarat (1884-1960)[1].

Swamiji had developed set of sixteen mathematical formulae or sūtras and their sub sūtras. These single line sūtras are in Samskrita easy to understand and remember. Each sūtra can be applied to solve many different mathematical operations.

These Sūtras help to solve the  'difficult" problems or huge sums  very quickly and calculations can be carried out mentally or involve one or two steps.

List Of Sūtras

Here are the list of Sūtras and Sub-Sūtras.

Sl.No. Sūtras Sub-Sūtras
1 एकाधिकेन पूर्वेण

Ekādhikena Pūrveṇa

आनुरूप्येण

Ānurūpyeṇa

2 निखिलं नवतश्चरमं दशतः

Nikhilaṃ Navataścaramaṃ Daśataḥ

शिष्यते शेषसंज्ञः

Śiṣyate Śeṣasaṃjñaḥ

3 ऊर्ध्वतिर्यग्भ्याम्

Ūrdhvatiryagbhyām

आद्यमाद्येनान्त्यमन्त्येन

Ādyamādyenāntyamantyena

4 परावर्त्य योजयेत्

Parāvartya Yojayet

केवलैः सप्तकं गुण्यात्

Kevalaiḥ Saptakaṃ Guṇyāt

5 शून्यं साम्यसमुच्चये

Śūnyaṃ Sāmyasamuccaye

वेष्टनम्

Veṣṭanam

6 (आनुरूप्ये) शून्यमन्यत्

(Ānurūpye) Śūnyamanyat

यावदूनं तावदूनम्

Yāvadūnaṃ Tāvadūnam

7 संकलनव्यवकलनाभ्याम्

Saṃkalanavyavakalanābhyām

यावदूनं तावदूनीकृत्य वर्गं च योजयेत्

Yāvadūnaṃ Tāvadūnīkṛtya Vargaṃ Ca Yojayet

8 पूरणापूरणाभ्याम्

Pūraṇāpūraṇābhyām

अन्त्ययोर्दशकेऽपि

Antyayordaśakeʼpi

9 चलनकलनाभ्याम्

Calanakalanābhyām

अन्त्ययोरेव

Antyayoreva

10 यावदूनम्

Yāvadūnam

समुच्चयगुणितः

Samuccayaguṇitaḥ

11 व्यष्टिसमष्टिः

Vyaṣṭisamaṣṭiḥ

लोपनस्थापनाभ्याम्

Lopanasthāpanābhyām

12 शेषाण्यङ्केन चरमेण

Śeṣāṇyaṅkena Carameṇa

विलोकनम्

Vilokanam

13 सोपान्त्यद्वयमन्त्यम्

Sopāntyadvayamantyam

गुणितसमुच्चयः समुच्चयगुणितः

Guṇitasamuccayaḥ Samuccayaguṇitaḥ

14 एकन्यूनेन पूर्वेण

Ekanyūnena Pūrveṇa

15 गुणितसमुच्चयः

Guṇitasamuccayaḥ

16 गुणकसमुच्चयः

Guṇakasamuccayaḥ

References

  1. Singhal, Vandana (2007). Vedic Mathematics For All Ages - A Beginners' Guide. Delhi: Motilal Banarsidass. pp. XV. ISBN 978-81-208-3230-5.