Place Values Of Digits in Līlāvatī

From Vidyalayawiki

Revision as of 02:36, 19 May 2023 by Ramamurthy (talk | contribs) (New Page created)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Introduction

Here we will know the names used to denote the place value of digits as mentioned in Līlāvatī.

Verse 11 & 12

एकदशशतसहस्रायुतलक्षप्रयुतकोटयः क्रमशः ।

अर्बुदमब्जं खर्वनिखर्वमहापद्मशंकवस्तस्मात् ॥ ११ ॥


जलधिश्चान्त्यं मध्यं परार्धमिति दशगुणोत्तरं संज्ञा: ।

संख्यायाः स्थानानां व्यवहारार्थं कृताः पूर्वैः ॥ १२ ॥

Translation

For the purposes (of convenient representation of numbers) the predecessors (in the field of mathematics) defined (made or coined) for mathematical operations the following terms of the places of numbers in that order : eka , daśa , śata , sahasra , ayuta , lakṣa , prayuta , koṭi , arbuda , abja , kharva , nikharva , mahāpadma , śaṅku , jaladhi , antya , madhya , parārdha , each succeeding (term) being ten times (of the preceeding one).[1]

Name Indian Notation Power

Notation

एक (eka) 1 100
दश (daśa) 10 eka 101
शत (śata) 10 daśa 102
सहस्र (sahasra) 10 śata 103
अयुत (ayuta) 10 sahasra 104
लक्ष (lakṣa) 10 ayuta 105
प्रयुत (prayuta) 10 lakṣa 106
कोटि (koṭi) 10 prayuta 107
अर्बुद (arbuda) 10 koṭi 108
अब्ज (abja) 10 arbuda 109
खर्व (kharva) 10 abja 1010
निखर्व (nikharva) 10 kharva 1011
महापद्म (mahāpadma) 10 nikharva 1012
शङ्कु (śaṅku) 10 mahāpadma 1013
जलधि (jaladhi) 10 śaṅku 1014
अन्त्य (antya) 10 jaladhi 1015
मध्य (madhya) 10 antya 1016
परार्ध (parārdha) 10 madhya 1017

Comment

Indian mathematicians discovered the decimal system in which place values are assigned to digits wherein values increase in powers of ten[2] The Greeks and Romans used letters to represent numbers with the result that the progress of Arithmetic was very slow in Eastern Europe. In India the use of the decimal system and the use of ten symbols (for 0, 1, 9) to represent any given number, made mathematical operations (addition, subtraction, etc.) easy. What Europeans call “Arabic numerals" were discovered in India and only recently some authors have started calling them "Hindu-Arabic numerals". These numerals were invented some time before 200 B.C. The current Devanāgarī numerals have been in use in various parts of India since A.D. 400 and the English numerals are their modified forms. Although this verse goes up to parārdha (1017), there are terms for numbers up to 10140 in Sanskrit.'

See Also

लीलावती में 'अंकों का स्थानीय मान'

References

  1. Pandit, M.D. Līlāvatī Of Bhaskarācārya Part I. Pune. pp. 34–37.
  2. Līlāvatī Of Bhāskarācārya - A Treatise of Mathematics of Vedic Tradition. New Delhi: Motilal Banarsidass Publishers. 2001. p. 10. ISBN 81-208-1420-7.