आर्यभटीयम् में 'वर्गमूल'

From Vidyalayawiki

Revision as of 14:02, 31 July 2023 by Mani (talk | contribs) (New Mathematics Organic Hindi Translated Page Created)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

भूमिका

यहां हम जानेंगे कि आर्यभटीयम् में बताए अनुसार वर्गमूल कैसे ज्ञात किया जाता है ।

श्लोक

भागं हरेदवर्गान्नित्यं द्विगुणेन वर्गमूलेन

वर्गाद् वर्गे शुद्धे लब्धं स्थानान्तरे मूलम्[1]

अनुवाद

उदाहरण : 88209 का वर्गमूल

इकाई स्थान से प्रारंभ करके विषम स्थान को वर्ग (V) और सम स्थान को गैर-वर्ग (A) के रूप में चिह्नित करें।

V A V A V
8 8 2 0 9
V A V A V प्रक्रिया विवरण वर्गमूल
8 8 2 0 9
- 22 = 4 4 बाएँ ओर के सबसे वर्ग अंक (8) तक के अंकों में से अधिकतम संभव वर्ग (4 = 22) घटाएँ। अब वर्गमूल 2 है और वर्गमूल स्तंभ में लिखा गया है 2
÷ 2 X 2 = 4) 4 8 (9 अगले गैर-वर्ग अंक (8) के अंक को नीचे लाएँ और इसे शेषफल (4) के दाईं ओर रखें। अब संख्या 48 है और इसे उस वर्गमूल के दोगुने से विभाजित करें जो वर्तमान में वर्गमूल स्तंभ में है (2) = 2 X 2 = 4
3 6 उपरोक्त संख्या को अधिकतम संभव संख्या 4 X 9 = 36 से इस प्रकार घटाएँ कि भागफल 10 से कम हो। यहां भागफल 9 है।
1 2 2 अगले वर्ग अंक (2) के अंक को नीचे लाएँ और शेषफल (12) के दाएँ रखें, अब संख्या 122 है
-92 8 1 इसमें से भागफल (9) का वर्ग = 81 घटा दें। भागफल (9) को वर्गमूल स्तंभ में पिछली संख्या (2) के आगे लिखें। अब वर्गमूल 29 है 2 9
÷ 2 X 29 = 58 58) 4 1 0 (7 अगले गैर-वर्ग अंक (0) के अंक को नीचे लाएँ और इसे नए शेषफल (41) के दाईं ओर रखें। अब संख्या 410 है और वर्तमान में वर्गमूल स्तंभ (29) में मौजूद वर्गमूल के दोगुने से विभाजित करें = 58
4 0 6 उपरोक्त संख्या को अधिकतम संभव संख्या 58 X 7 = 406 से घटाएँ। यहां भागफल 7 है।
4 9 अगले वर्ग अंक (9) के अंक को नीचे लाएँ और शेषफल (4) के दाईं ओर रखें, अब संख्या 49 है
-72 4 9 इसमें से भागफल (7) = 49 का वर्ग घटा दें। इस भागफल (7) को वर्गमूल स्तंभ में अब तक प्राप्त वर्गमूल (29) के आगे लिखें। 2 9 7
0

चूँकि शेषफल शून्य है इसलिए दी गई संख्या एक पूर्ण वर्ग है।

88209 का वर्गमूल = 297

उदाहरण: 117649 का वर्गमूल

इकाई स्थान से प्रारंभ करके विषम स्थान को वर्ग (V) और सम स्थान को गैर-वर्ग (A) के रूप में चिह्नित करें।

A V A V A V
1 1 7 6 4 9
A V A V A V प्रक्रिया विवरण वर्गमूल
1 1 7 6 4 9
- 32 = 9 9 बाएँ ओर के सबसे वर्ग अंक (11) के अंकों से अधिकतम संभव वर्ग (9 = 32) घटाएँ। अब वर्गमूल 3 है और वर्गमूल स्तंभ में लिखा गया है 3
÷ 2 X 3 6) 2 7 (4 अगले गैर-वर्ग अंक (7) के अंक को नीचे लाएँ और इसे शेषफल (2) के दाईं ओर रखें। अब संख्या 27 है और इसे वर्तमान वर्गमूल स्तंभ (3) में मौजूद वर्गमूल के दोगुने से विभाजित करें = 2 X 3 = 6
2 4 उपरोक्त संख्या को अधिकतम संभव संख्या 6 X 4 = 24 से घटाएँ। यहां भागफल 4 है।
3 6 अगले वर्ग अंक (6) के अंक को नीचे लाएँ और शेषफल (3) के दाएँ रखें, अब संख्या 36 है
- 42 1 6 इसमें से भागफल (4) का वर्ग = 16 घटा दें। वर्गमूल स्तंभ में पिछली संख्या (3) के आगे भागफल (4) लिखें। अब वर्गमूल 34 है 3 4
÷ 2 X 34 = 68 68) 2 0 4 (3 अगले गैर-वर्ग अंक (4) के अंक को नीचे लाएँ और इसे नए शेषफल (20) के दाईं ओर रखें। अब संख्या 204 है और वर्तमान में वर्गमूल स्तंभ (34) में मौजूद वर्गमूल के दोगुने से विभाजित करें = 68
2 0 4 उपरोक्त संख्या को अधिकतम संभव संख्या 68 X 3= 204 से घटाएँ। यहां भागफल 3 है।
0 9 अगले वर्ग अंक (9) के अंक को नीचे लाएँ और शेषफल (0) के दाएँ रखें, अब संख्या 9 है
-32 9 इसमें से भागफल (3) का वर्ग = 9 घटा दें। वर्गमूल स्तंभ में पिछली संख्या (34) के आगे भागफल (3) लिखें। अब वर्गमूल 343 है 3 4 3
0

चूँकि शेषफल शून्य है इसलिए दी गई संख्या एक पूर्ण वर्ग है।

117649 का वर्गमूल = 343

यह भी देखें

Square root in Āryabhaṭīyam

संदर्भ

  1. (आर्यभटीयम् (गणितपादः) (संस्कृत में)। दिल्ली: संस्कृत प्रमोशन फाउंडेशन. 2023. पृ. 10-14.)"Āryabhaṭīyam (Gaṇitapādaḥ) (in Saṃskṛta). Delhi: Samskrit Promotion Foundation. 2023. pp. 10-14."