भाज्य संख्याएँ

From Vidyalayawiki

Revision as of 17:57, 14 September 2023 by Ramamurthy (talk | contribs) (citation added)

ऐसी संख्याएं जिनके दो से ज्यादा गुणनखंड होते हैं ,उन्हें हम भाज्य संख्याएं कहते हैं , अर्थात जब दो से अधिक संख्याओं को गुणा करने पर कोई संख्या बनती है तो वह भाज्य संख्या होती है [1]। भाज्य संख्याएँ अभाज्य संख्याओं के बिल्कुल विपरीत होती हैं [2]

उदाहरण

के गुणनखंड =

के गुणनखंड =

उपर्युक्त उदाहरण से हमने समझा कि के गुणनखंडों में तथा है, तथा के गुणनखंड और है, परिभाषा के अनुसार इससे हमें पता चलता है कि एक भाज्य संख्या है तथा एक अभाज्य संख्या है ।

अतः हम कह सकते हैं कि, सभी प्राकृतिक संख्याएँ जो अभाज्य संख्याएँ नहीं हैं; भाज्य संख्याएँ हैं ,क्योंकि उन्हें दो से अधिक संख्याओं से विभाजित किया जा सकता है।

भाज्य संख्याओं के गुण

किसी संख्या को भाज्य संख्या कहलाने के लिए निम्नलिखित गुण होने चाहिए, आइए देखें कि वे गुण क्या हैं

  1. भाज्य संख्याएँ छोटी संख्याओं द्वारा समान रूप से विभाज्य होती हैं, जो अभाज्य या भाज्य संख्या हो सकती हैं।
  2. भाज्य संख्याओं में दो से अधिक गुणनखंड होते है।
  3. भाज्य संख्याएँ अन्य भाज्य संख्याओं से विभाज्य होती हैं।
  4. प्रत्येक भाज्य संख्या में गुणनखंड के रूप में कम से कम दो अभाज्य संख्याएँ होती हैं।

भाज्य संख्याओं के प्रकार

गणित में भाज्य संख्याओं के दो मुख्य प्रकार हैं , जो निम्नवत है

  1. विषम भाज्य संख्याएँ
  2. सम भाज्य संख्याएँ

विषम भाज्य संख्याएँ

एक भाज्य संख्या जो एक विषम संख्या होती है, उसे विषम भाज्य संख्या के रूप में जाना जाता है। हम इसे इस प्रकार भी परिभाषित कर सकते हैं कि वे सभी विषम पूर्णांक जो अभाज्य नहीं हैं, विषम भाज्य संख्याएँ हैं । 9 सबसे छोटी विषम भाज्य संख्या है ।

उदाहरण के लिए: । यह सभी विषम भाज्य संख्याएं हैं, क्योंकि यह से विभाज्य नहीं है ।

सम भाज्य संख्याएँ

वह भाज्य संख्या जो एक सम संख्या भी होती है, सम भाज्य संख्या कहलाती है। अतः सभी सम संख्याएँ जो अभाज्य नहीं हैं, सम भाज्य संख्याएँ हैं । सबसे छोटी सम भाज्य संख्या है।

उदाहरण के लिए: आदि ,यह सभी सम भाज्य संख्याएं हैं, क्योंकि यह से विभाज्य हैं ।

अभ्यास प्रश्न

  1. दो अंकों की सबसे छोटी भाज्य संख्या कौन सी है ?
  2. ज्ञात कीजिए कि निम्नलिखित में से कौन सी भाज्य संख्या नहीं है विस्तार पूर्वक समझाइए ?
  3. प्रथम भाज्य संख्याओं का गुणनफल ज्ञात कीजिए

संदर्भ

  1. Agarwal, RS (1997). Mathematics. Kanpur: higgin bothoms. pp. 14–20.
  2. "REAL Numbers".