गोलीय दर्पण

From Vidyalayawiki

Revision as of 18:21, 25 September 2023 by Vinamra (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Listen

spherical mirror

गोलीय दर्पण एक गोलीय दर्पण होता है जिसका आकार गोले के एक खंड के समान होता है।

गोलीय दर्पण के दो प्रकार

अवतल दर्पण
  • अवतल दर्पण अंदर की ओर मुड़ा होता है, जिसकी परावर्तक सतह अंदर की ओर होती है।
  • यह उस पर पड़ने वाली प्रकाश किरणों को एकत्रित या केंद्रित कर सकता है।
  • अवतल दर्पण दर्पण के सापेक्ष वस्तु की स्थिति के आधार पर वास्तविक और आभासी दोनों तरह की छवियां बना सकते हैं।
  • सामान्य उपयोगों में मेकअप दर्पण और दूरबीन शामिल हैं।
उत्तल दर्पण
  • उत्तल दर्पण बाहर की ओर मुड़ा हुआ होता है, जिसकी परावर्तक सतह बाहर की ओर उभरी हुई होती है।
  • यह उस पर पड़ने वाली प्रकाश किरणों को मोड़ देता है या फैला देता है।
  • उत्तल दर्पण हमेशा आभासी छवियाँ बनाते हैं जो छोटी होती हैं और दर्पण के पीछे स्थित होती हैं।
  • सामान्य उपयोगों में वाहनों पर साइड-व्यू दर्पण शामिल हैं।

गोलीय दर्पणों के लिए गणितीय समीकरण

अवतल और उत्तल दर्पणों के लिए, वस्तु दूरी (), छवि दूरी (), और दर्पण की फोकल लंबाई () से संबंधित करने के लिए दो महत्वपूर्ण समीकरणों का उपयोग किया जाता है। ये समीकरण दर्पण समीकरण से प्राप्त होते हैं:

दर्पण समीकरण

दर्पण समीकरण वस्तु दूरी (d_o), छवि दूरी (d_i), और गोलीय दर्पण के लिए फोकल लंबाई (f) से संबंधित है:

जहाँ:

   f दर्पण की फोकल लंबाई है।

   d-o दर्पण से वस्तु की दूरी है (यदि दर्पण के सामने है तो सकारात्मक, यदि पीछे है तो नकारात्मक)।

   d_i दर्पण से छवि की दूरी है (यदि वास्तविक और दर्पण के सामने सकारात्मक, यदि आभासी और पीछे नकारात्मक)।

दर्पण से संबंधित महत्वपूर्ण बिंदु

मुख्य फोकस (f) दर्पण के मुख्य अक्ष पर एक बिंदु है जहां प्रकाश की समानांतर किरणें परावर्तन के बाद या तो परिवर्तित होती हैं (अवतल दर्पण के लिए) या (उत्तल दर्पण के लिए) से अलग होती दिखाई देती हैं।

फोकल लंबाई (f)

एक गोलीय दर्पण की फोकल लंबाई दर्पण की सतह और उसके फोकल बिंदु के बीच की दूरी है (वह बिंदु जहां प्रकाश की समानांतर किरणें अवतल दर्पण के लिए प्रतिबिंब के बाद परिवर्तित होती हैं, या उत्तल दर्पण के लिए विसरित होती दिखाई देती हैं) .

अवतल दर्पण एक ऐसा दर्पण होता है जो अंदर की ओर मुड़ता है, और इसका वक्रता केंद्र (C), मुख्य फोकस (F) और शीर्ष (V) होता है।

वक्रता केंद्र (C) उस गोले का केंद्र है जिससे दर्पण एक भाग है।

 शीर्ष (V) वह बिंदु है जहां दर्पण की सतह मुख्य अक्ष से मिलती है।

गणितीय समीकरण

 दर्पण समीकरण

दर्पण समीकरण वस्तु दूरी (डोडो), छवि दूरी (दीदी), और अवतल दर्पण की फोकल लंबाई (एफएफ) से संबंधित है। इसे इस प्रकार व्यक्त किया जा सकता है:

1/f=1/di +1/do

जहाँ:

   f दर्पण की फोकल लंबाई है (अवतल दर्पण के लिए सकारात्मक)।

   di छवि दूरी है (वास्तविक छवियों के लिए सकारात्मक, आभासी छवियों के लिए नकारात्मक)।

   do वस्तु की दूरी है (वास्तविक वस्तुओं के लिए सकारात्मक, आभासी वस्तुओं के लिए नकारात्मक)।

किसी दो पैरामीटर को जानने पर इस समीकरण से छवि दूरी या दर्पण की फोकल लंबाई की गणना करने की अनुमति मिलती है।

आवर्धन समीकरण

गोलीय दर्पण द्वारा बनी छवि का आवर्धन (M) इस प्रकार दिया जाता है:

M=−di/do

जहाँ:

   M आवर्धन है.

   ​ do और di ​ का चिह्न एक ही है (या तो सकारात्मक या दोनों नकारात्मक)।

छवि प्रकार

केंद्र बिंदु के सापेक्ष वस्तु की दूरी के आधार पर, गोलीय दर्पण वास्तविक या आभासी छवियां बना सकते हैं, जो सीधे या उल्टे हो सकते हैं।

आवर्धन

आवर्धन समीकरण हमें बताता है कि छवि वस्तु से बड़ी है या छोटी है और यह सीधी है या उलटी है।

गोलीय दर्पण कई ऑप्टिकल उपकरणों के आवश्यक घटक हैं, जिनमें दूरबीन, सूक्ष्मदर्शी और यहां तक ​​कि साधारण मेकअप दर्पण भी शामिल हैं। जब प्रकाश गोलीय दर्पणों के साथ संपर्क करता है तो उसके व्यवहार को समझना ऑप्टिकल डिजाइन और विश्लेषण में महत्वपूर्ण है।

छवि निर्माण

  •  जब वस्तु केंद्र बिंदु (do>f) से परे होती है, तो केंद्र बिंदु और वक्रता केंद्र के बीच एक वास्तविक और उलटी छवि बनती है।
  •  जब वस्तु फोकस बिंदु (do=f) पर होती है, तो कोई वास्तविक छवि नहीं बनती है; परावर्तन के बाद प्रकाश की किरणें समानांतर हो जाती हैं।
  •  जब वस्तु फोकस बिंदु और दर्पण (f<do<2f) के बीच होती है, तो वस्तु के समान तरफ एक आभासी और सीधी छवि बनती है।

संक्षेप में

गोलीय दर्पण कई ऑप्टिकल उपकरणों के आवश्यक घटक हैं, जिनमें दूरबीन, सूक्ष्मदर्शी और यहां तक ​​कि साधारण मेकअप दर्पण भी शामिल हैं। जब प्रकाश गोलीय दर्पणों के साथ संपर्क करता है तो उसके व्यवहार को समझना ऑप्टिकल डिजाइन और विश्लेषण में महत्वपूर्ण है।