वर्गीकृत आँकड़ों का माध्यक

From Vidyalayawiki

Revision as of 15:20, 12 June 2024 by Mani (talk | contribs) (added content)

वर्गीकृत आँकड़ों का माध्यक निरंतर और आवृत्ति वितरण के रूप में आँकड़ों का माध्यक है। माध्यक दिए गए आँकड़ों का सबसे मध्यमान मान है जो आँकड़ों के निचले आधे भाग को ऊपरी आधे भाग से अलग करता है। वर्गीकृत आँकड़ों के माध्यक की गणना करते समय निम्नलिखित बातें उपस्थित होती हैं:

  • माध्यिका वर्ग
  • संचयी बारंबारता
  • वर्गीकृत आँकड़ों के सूत्र की माध्यिका

माध्यिका की परिभाषा

माध्यिका किसी दिए गए आँकड़ों के समुच्चयों को आरोही क्रम में व्यवस्थित करने के बाद सबसे मध्य मान है। यदि सूची में वस्तुओं की कुल संख्या विषम है, तो मानों को आरोही क्रम में व्यवस्थित करने के बाद मध्यतम मान को माध्यिका के रूप में लिया जाता है।

माध्यिका = वां पद, जहां 𝑛 प्रेक्षणों की कुल संख्या है।

यदि आँकड़ों के समुच्चयों में वस्तुओं की संख्या सम है, तो दो मध्य मानों का औसत माध्यिका के रूप में लिया जाता है।

माध्यिका = वां पद+ वां पद/ जहां 𝑛 प्रेक्षणों की कुल संख्या है।

उदाहरण: आइए आंकड़ों पर विचार करें: । माध्यिका क्या है?

हल:

आरोही क्रम में व्यवस्थित करने पर, हमें . प्राप्त होते हैं। यहां, (प्रेक्षणों की संख्या) =

सम आँकड़ों की माध्यिका ज्ञात करने के लिए हम निम्नलिखित सूत्र का उपयोग करते हैं:

माध्यिका = वां पद + वां पद/

माध्यिका = वां पद + वां पद/

माध्यिका = वां पद + वां पद/

माध्यिका =

वर्गीकृत आँकड़ों के सूत्र की माध्यिका

माध्यिका =

  • = माध्यिका वर्ग की निम्न(निचली) सीमा
  • = प्रेक्षणों की कुल संख्या
  • = पूर्ववर्ती (माध्यिका वर्ग की) कक्षा की संचयी बारंबारता
  • =माध्यिका वर्ग की बारंबारता
  • =प्रत्येक वर्गमाप

वर्गीकृत डेटा की माध्यिका ज्ञात करने की प्रक्रिया

किसी भी दिए गए आँकड़ों की माध्यिका ज्ञात करना सरल है क्योंकि माध्यिका आँकड़ों का सबसे मध्य मान है। चूंकि आँकड़ों को वर्गीकृत किया गया है, इसलिए इसे वर्ग अंतरालों में विभाजित किया गया है। समूहीकृत आँकड़ों की माध्यिका ज्ञात करने की प्रक्रिया(चरण) यहां दिए गए हैं।

  • Step 1: Construct the frequency distribution table with class intervals and frequencies.
  • Step 2: Calculate the cumulative frequency of the data by adding the preceding cumulative value of the frequency with the current value.
  • Step 3: Find the value of by adding the values in frequency (which is nothing but the last value of the cumulative frequency column)
  • Step 4: Find the median class. If is odd, the median is the th value. If n is even, then the median will be the average of the th and the th observation.
  • Step 5: Find the lower limit of the class interval and the cumulative frequency.
  • Step 6: Apply the formula for median in statistics: Median =

Let us look at an example to understand this better.

Calculate the median for the following data:

Marks Number of students

हल:

We need to calculate the cumulative frequencies to find the median.

Marks Number of students Cumulative frequency

last value of cumulative frequency

Since is even, we will find the the average of the th and the th observation i.e. the cumulative frequency greater than is and the class is . Hence, the median class is .

Using the median formula.

माध्यिका =

माध्यिका