पूर्णांक

From Vidyalayawiki

Revision as of 19:54, 26 September 2024 by Ramamurthy (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

पूर्णांक पूर्ण संख्याओं और प्राकृतिक संख्याओं के ऋणात्मक मानों का संग्रह हैं । पूर्णांकों में भिन्न संख्याएँ सम्मिलित नहीं होती हैं, अर्थात उन्हें रूप में नहीं लिखा जा सकता है । पूर्णांकों की सीमा ऋणात्मक सिरे पर से लेकर धनात्मक सिरे पर तक होती है, जिसमें शून्य भी सम्मिलित है। पूर्णांकों को प्रतीक द्वारा दर्शाया जाता है ।

उदाहरण : आदि सभी पूर्णांकों के उदाहरण हैं ।

पूर्णांकों के प्रकार

पूर्णांकों को तीन प्रकार [1]में विभाजित किया जा सकता है । पूर्णांकों के ये तीन प्रकार हैं: धनात्मक पूर्णांक, ऋणात्मक पूर्णांक तथा शून्य ।

  1. धनात्मक पूर्णांक : ऐसी पूर्णांक संख्याएं , जो धनात्मक हैं , धनात्मक पूर्णांक संख्याएं कहलाती हैं । एक पूर्णांक संख्यां जिसके आगे कोई चिन्ह (धनात्मक या ऋणात्मक) नहीं लगा हो, धनात्मक पूर्णांक हैं। उदाहरण : आदि सभी धनात्मक पूर्णांक के उदाहरण हैं ।
  2. ऋणात्मक पूर्णांक : ऐसी पूर्णांक संख्याएं जिनके पूर्व ऋणात्मक चिन्ह लगा हो , ऋणात्मक पूर्णांक संख्याएं कहलाती हैं । उदाहरण : आदि ऋणात्मक पूर्णांक के उदाहरण हैं ।
  3. शून्य  : शून्य एक पूर्णांक है, परंतु शून्य न तो धनात्मक है और न ही ऋणात्मक होता है ।

पूर्णांकों के गुण

पूर्णांकों पर चार संक्रियाए- जोड़, घटाव, गुणा और भाग हम कर सकते हैं , जिसके परिणामस्वरूप पूर्णांकों की चार मुख्य विशेषताएँ [2]प्राप्त होती हैं, जिन्हें नीचे दर्शाया गया है ;

  1. संवृत गुण
  2. क्रमचयी गुण
  3. साहचर्य गुण
  4. वितरणात्मक गुण
  5. तत्समक गुण

संवृत गुण

जोड़ और घटाव के तहत पूर्णांकों का संवृत गुण बताता है , कि किन्हीं दो पूर्णांकों का योग या अंतर हमेशा एक पूर्णांक होगा । यदि और कोई दो पूर्णांक हैं, तो और भी एक पूर्णांक होंगे ।

उदाहरण

जो एक पूर्णांक है ।

जो एक पूर्णांक है ।

गुणन के अंतर्गत पूर्णांकों का समापन गुण बताता है कि किन्हीं दो पूर्णांकों का गुणनफल एक पूर्णांक होगा जिसका अर्थ है कि यदि और कोई दो पूर्णांक हैं, तो भी एक पूर्णांक होगा ।

उदाहरण

जो एक पूर्णांक है ।

पूर्णांकों का विभाजन समापन गुण के लिए मान्य नहीं है , अर्थात किन्हीं दो पूर्णांकों और का भागफल पूर्णांक हो भी सकता है और नहीं भी हो सकता है ।

उदाहरण

जो एक पूर्णांक है ।

जो एक पूर्णांक नहीं है ।

क्रमचयी गुण

यदि संख्याओं का क्रम बदल दिया जाए, तो भी दो पूर्णांकों का योग या गुणनफल वही रहता है । लेकिन यह पूर्णांकों के घटाव और विभाजन के लिए मान्य नहीं है ।

जोड़ की क्रमचयी गुण

उदाहरण

गुणन की क्रमचयी गुण

उदाहरण

वितरणात्मक गुण

पूर्णांकों के लिए वितरणात्मक गुण दो प्रकार के होते हैं , जोड़ पर गुणन का वितरणात्मक नियम और घटाव पर गुणन का वितरणात्मक नियम ।

जोड़ पर गुणन का वितरणात्मक नियम:

उदाहरण

घटाव पर गुणन की वितरणात्मक नियम:

उदाहरण

साहचर्य गुण

पूर्णांकों को जोड़ते और गुणा करते समय , साहचर्य स्थिति सत्य होती है । हम जोड़ और गुणा के लिए साहचर्य नियम लागू कर सकते हैं लेकिन यह घटाव और विभाजन के लिए लागू नहीं होता है ।

जोड़ का साहचर्य गुण:

उदाहरण

गुणन का साहचर्य गुण:

उदाहरण

तत्समक गुण

जब किसी पूर्णांक में कोई शून्य जोड़ा जाता है , तो वह वही संख्या देगा । शून्य को योगात्मक तत्समक कहा जाता है । किसी पूर्णांक के लिए , होगा ।

उदाहरण

पूर्णांकों के लिए गुणक तत्समक गुण कहता है कि जब भी किसी पूर्णांक को संख्या से गुणा किया जाता है, तो परिणाम के रूप में पूर्णांक ही प्राप्त होगा । अतः , को किसी संख्या का गुणक तत्समक कहा जाता है । किसी पूर्णांक के लिए होगा ।

उदाहरण

यदि किसी पूर्णांक को से गुणा किया जाए, तो परिणाम शून्य होगा किसी पूर्णांक के लिए होगा ।

उदाहरण

यदि किसी पूर्णांक को से गुणा किया जाता है , तो परिणाम संख्या के विपरीत होगा किसी पूर्णांक के लिए होगा ।

उदाहरण

संदर्भ

  1. "पूर्णांक के प्रकार".
  2. "पूर्णांकों के गुण".