त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक-तल
अंतरिक्ष में किसी बिंदु की स्थिति को ज्ञात करने के लिए, हमें एक समकोण निर्देशांक प्रणाली की आवश्यकता होती है। में एक निश्चित निर्देशांक प्रणाली चुनने के बाद, उस प्रणाली में किसी भी बिंदु के निर्देशांक एक क्रमबद्ध -टपल द्वारा दिए जा सकते हैं। इसके अलावा, यदि निर्देशांक पहले से ही ज्ञात हैं, तो हम आसानी से अंतरिक्ष में बिंदु को ज्ञात कर सकते हैं।अंतरिक्ष में निश्चित निर्देशांक्षों, निर्देशांक तलों और मूल बिंदु सहित निर्देशांक्ष निकाय के चयन के पश्चात् दिए बिंदु के तीन निर्देशांक को ज्ञात करने की विधि तथा वैकल्पिक विधि से तीन संख्याओं के त्रिदिक (ट्रिपलेट) दिए जाने पर अंतरिक्ष में संगत बिंदु के निर्धारण करने की विधि की अब हम विस्तार से व्याख्या करते हैं।
त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक - तल
बिंदु पर प्रतिच्छेदित करने वाले तीन परस्पर लंब तलों की कल्पना कीजिए ( चित्र )। ये तीनों तल रेखाओं X'OX, Y'OY और ZOZ पर प्रतिच्छेदित करते हैं जिन्हें क्रमश: x- अक्ष, y-अक्ष और z-अक्ष कहते हैं। हम स्पष्टतः देखते हैं कि ये तीनों रेखाएँ परस्पर लंब हैं। इन्हें हम समकोणिक निर्देशांक निकाय कहते हैं। XOY, Y' YOZ और ZOX, तलों को क्रमश: XY-तल, YZ - तल, तथा ZX - तल कहते हैं। ये तीनों तल निर्देशांक तल कहलाते हैं।
हम कागज के तल को XOY तल लेते हैं। और ZOZ रेखा को तल XOY पर लंबवत लेते हैं। यदि कागज के तल को क्षैतिजतः रखें तो ZOZ रेखा ऊर्ध्वारितः होती है। XY-तल से OZ की दिशा में ऊपर की ओर नापी गई दूरियाँ धनात्मक और OZ' की दिशा में नीचे की ओर नापी गई दूरियाँ ऋणात्मक होती हैं। ठीक उसी प्रकार ZX-तल के दाहिने OY दिशा में नापी गई दूरियाँ धनात्मक और ZX तल के बाएँ OY' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। YZ - तल के सम्मुख OX दिशा में नापी गई दूरियाँ धनात्मक तथा इसके पीछे OX' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। बिंदु को निर्देशांक निकाय का मूल बिंदु कहते हैं। तीन निर्देशांक तल अंतरिक्ष को आठ भागों में बांटते हैं, इन अष्टाशों के नाम XOYZ, X'OYZ, X'OY Z, XOY Z, XOYZ, X'OY Z, X'OY'Z' और XOY'Z' हैं। और जिन्हें क्रमश: I, II, III, VIII द्वारा प्रदर्शित करते हैं।