त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक-तल

From Vidyalayawiki

Revision as of 09:38, 5 November 2024 by Mani (talk | contribs) (added internal links)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

अंतरिक्ष में किसी बिंदु के निर्देशांक, उसे ज्ञात करने में मदद करने वाला पता होता है।त्रि-आयामी() अंतरिक्ष या -अंतरिक्ष में किसी बिंदु के निर्देशांक को एक आदेशित त्रिक के रूप में दर्शाया जाता है। यहां, , , और संख्याएं, बिंदु के -, -, और -निर्देशांक को दर्शाती हैं।

इसके अतिरिक्त, यदि निर्देशांक पहले से ही ज्ञात हैं, तो हम आसानी से अंतरिक्ष में बिंदु को ज्ञात कर सकते हैं।अंतरिक्ष में निश्चित निर्देशांक्षों, निर्देशांक तलों और मूल बिंदु सहित निर्देशांक्ष निकाय के चयन के पश्चात् दिए बिंदु के तीन निर्देशांक को ज्ञात करने की विधि तथा वैकल्पिक विधि से तीन संख्याओं के त्रिदिक (ट्रिपलेट) दिए जाने पर अंतरिक्ष में संगत बिंदु  के निर्धारण करने की विधि की अब हम विस्तार से व्याख्या करते हैं।

चित्र

त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक - तल

बिंदु पर प्रतिच्छेदित करने वाले तीन परस्पर लंब तलों की कल्पना कीजिए ( चित्र )। ये तीनों तल रेखाओं , और पर प्रतिच्छेदित करते हैं जिन्हें क्रमश: - अक्ष, -अक्ष और -अक्ष कहते हैं। हम स्पष्टतः देखते हैं कि ये तीनों रेखाएँ परस्पर लंब हैं। इन्हें हम समकोणिक निर्देशांक निकाय कहते हैं। , और , तलों को क्रमश: -तल, - तल, तथा - तल कहते हैं। ये तीनों तल निर्देशांक तल कहलाते हैं।

धनात्मक और ऋणात्मक अक्षों को नीचे बताए अनुसार निर्धारित किया जा सकता है:

हम कागज के तल को तल लेते हैं। और रेखा को तल पर लंबवत लेते हैं। यदि कागज के तल को क्षैतिजतः रखें तो रेखा ऊर्ध्वारितः होती है। -तल से की दिशा में ऊपर की ओर नापी गई दूरियाँ धनात्मक और की दिशा में नीचे की ओर नापी गई दूरियाँ ऋणात्मक होती हैं।

ठीक उसी प्रकार -तल के दाहिने दिशा में नापी गई दूरियाँ धनात्मक और तल के बाएँ की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। - तल के सम्मुख दिशा में नापी गई दूरियाँ धनात्मक तथा इसके पीछे की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। बिंदु को निर्देशांक निकाय का मूल बिंदु कहते हैं।

तीन निर्देशांक तल अंतरिक्ष को आठ भागों में बांटते हैं, इन अष्टाशों के नाम , , ,, , , और हैं। और जिन्हें क्रमश: द्वारा प्रदर्शित करते हैं।

इन अष्टकों के आधार पर हम बिंदुओं के निर्देशांक लिख सकते हैं और इन बिंदुओं के निर्देशांक चिह्न नीचे सारणीबद्ध हैं:

अष्टक

निर्देशांक

I II III IV V VI VII VIII
+ - - + + - - +
+ + - - + + - -
+ + + + - - - -

त्रि-आयामी अंतरिक्ष में, विभिन्न स्थानों पर स्थित बिंदुओं के निर्देशांक इस प्रकार लिखे जा सकते हैं:

मूल बिंदु के निर्देशांक हैं

  • -अक्ष पर किसी भी बिंदु के निर्देशांक इस प्रकार होंगे
  • -अक्ष पर किसी भी बिंदु के निर्देशांक इस प्रकार होंगे
  • -अक्ष पर किसी भी बिंदु के निर्देशांक इस प्रकार होंगे
  • -समतल निर्देशांक में कोई भी बिंदु के रूप का होता है
  • -समतल निर्देशांक में कोई भी बिंदु के रूप का होता है
  • -समतल निर्देशांक में कोई भी बिंदु के रूप का होता है