रेखा के समीकरणों के विविध रूप

From Vidyalayawiki

Revision as of 10:28, 20 November 2024 by Mani (talk | contribs) (added content)

इस लेख में हम एक रेखा के समीकरण के विविध रूपों पर चर्चा करने जा रहे हैं। एक निर्देशांक तल में अनंत संख्या में बिंदु होते हैं। यदि हम तल में एक बिंदु और इसे नामक एक रेखा मानते हैं। तब हम यह निर्धारित करेंगे कि जिस बिंदु पर हम विचार कर रहे हैं वह रेखा पर स्थित है या यह रेखा के ऊपर या नीचे स्थित है। इस परिदृश्य में सरल रेखा तब काम आती है। यहाँ हम विभिन्न रूपों में एक रेखा के समीकरण से संबंधित महत्वपूर्ण विषय को उपस्थित करेंगे।

रेखा के समीकरण के रूप

सरल रेखा के लिए ज्ञात मापदंडों के आधार पर, रेखा के समीकरण के 5 रूप हैं जिनका उपयोग रेखा के समीकरण को निर्धारित करने और उसका प्रतिनिधित्व करने के लिए किया जाता है:

बिंदु ढलान रूप –

इस रूप में रेखा पर एक बिंदु और रेखा की ढलान की आवश्यकता होती है। रेखा पर संदर्भित बिंदु है और रेखा की ढलान है। बिंदु एक संख्यात्मक मान है और बिंदु के -निर्देशांक और -निर्देशांक को दर्शाता है और रेखा की ढलान सकारात्मक -अक्ष के साथ एक रेखा का झुकाव है।

यहाँ, में सकारात्मक, नकारात्मक या शून्य ढलान हो सकता है। इसलिए, एक रेखा का समीकरण इस प्रकार है:

दो बिंदु रूप –

यह रूप दो बिंदुओं -और से होकर गुजरने वाली रेखा के बिंदु-ढलान का एक और स्पष्टीकरण है:

ढलान अंत: खंड रूप –

रेखा का ढलान-अंत: खंड रूप है। यहाँ, '' रेखा का ढलान है, और '' रेखा का -अंत: खंड है। यह रेखा -अक्ष को बिंदु पर काटती है, जहाँ मूल बिंदु से -अक्ष पर इस बिंदु की दूरी है।

ढलान-अंत: खंड रूप एक महत्वपूर्ण रूप है और गणित के विभिन्न विषयों में इसके बहुत अच्छे अनुप्रयोग हैं।

अंत: खंड रूप –

इस रूप में रेखा का समीकरण -अंत: खंड और -अंत: खंड से बनता है। रेखा -अक्ष को एक बिंदु पर काटती है, और -अक्ष को एक बिंदु पर काटती है, और मूल बिंदु से इन बिंदुओं की क्रमशः दूरी है। जबकि इन दो बिंदुओं को दो-बिंदु रूप में प्रतिस्थापित किया जा सकता है और रेखा के समीकरण के इस अंत: खंड रूप को प्राप्त करने के लिए सरलीकृत किया जा सकता है।

रेखा के समीकरण का अंत: खंड रूप उस दूरी को स्पष्ट करता है जिस पर रेखा -अक्ष और -अक्ष को मूल बिंदु से काटती है।

सामान्य रूप -

सामान्य रूप दी गई रेखा के लंबवत रेखा पर आधारित होता है, जो मूल बिंदु से होकर गुजरती है, और इसे सामान्य के रूप में जाना जाता है।

यहाँ, सामान्य की लंबाई के पैरामीटर '' हैं और इस सामान्य द्वारा धनात्मक -अक्ष के साथ बनाया गया कोण '' है जो एक रेखा के समीकरण को बनाने के लिए उपयोगी है। रेखा के समीकरण का सामान्य रूप इस प्रकार है:

सरल रेखा के समीकरण के विविध रूप

A. y-अक्ष के समांतर रेखा का समीकरण

एक सरल रेखा का समीकरण जो -अक्ष के समांतर ‘’ की दूरी पर है, तो -अक्ष का समीकरण होगा (यहाँ ‘’ समतल में निर्देशांक है)।

इस उदाहरण पर विचार करें निर्देशांक के लिए -अक्ष के समांतर रेखा का समीकरण है

B. x-अक्ष के समांतर रेखा का समीकरण

सरल रेखा का समीकरण यदि सरल रेखा -अक्ष के समांतर है, तो समीकरण होगा जहाँ ‘’ एक मनमाना स्थिरांक है।

समझने के लिए कोई इस उदाहरण पर विचार कर सकता है, इसे एक बिंदु पर विचार करें -अक्ष के समांतर रेखा का समीकरण है

C. समीकरण का बिंदु-ढलान रूप

मान लीजिए कि किसी विशेष बिंदु और से होकर गुजरने वाली रेखा उल्लिखित रेखा में मौजूद कोई भी बिंदु है।

रेखा का ढलान

और परिभाषा के अनुसार ढलान है,

इसलिए,

तुलना करने पर रेखा का आवश्यक बिंदु-ढलान रूप समीकरण है

D. दो-बिंदु रूप में रेखा का समीकरण

रेखा में मौजूद एक मनमाना स्थिरांक पर विचार करें और रेखा दो बिंदुओं और से होकर गुजरती है। हम ‘’ को रेखा का ढलान मानते हैं।

फिर रेखा का समीकरण है

का मान प्रतिस्थापित करने पर हमें मिलता है

दो बिंदु रूप में आवश्यक रेखा का समीकरण है

E. अंत: खंड रूप में रेखा का समीकरण

मान लीजिए रेखा -अक्ष पर तथा -अक्ष पर पर अंतःखंड काटती है

दो-बिंदु रूप से:

अंतःखंड रूप में रेखा का अपेक्षित समीकरण है

उदाहरण:

एक रेखा का समीकरण ज्ञात करने पर विचार करें जिसने -अक्ष पर का अवरोध बनाया है और ग्राफ में -अक्ष का एक कट बनाया है

समाधान

तो,और

इसलिए अवरोध रूप में एक रेखा का आवश्यक समीकरण

रेखा का ढलान-अंत: खंड रूप:

एक रेखा पर विचार करें जिसका ढलान है जो -अक्ष पर ‘’ की दूरी पर एक अंत: खंड काटती है। इसलिए बिंदु है

इसलिए, आवश्यक समीकरण है:

जो एक रेखा का आवश्यक समीकरण है।

उदाहरण:

एक रेखा का समीकरण ज्ञात करें जिसका ढलान है और -अक्ष के धनात्मक भाग में इकाइयों का अंत: खंड है।

समाधान

यहाँ, और

में यह मान प्रतिस्थापित करने पर हमें प्राप्त होता है: