फलनों के प्राचलिक रूपों के अवकलज

From Vidyalayawiki

Revision as of 14:06, 2 December 2024 by Mani (talk | contribs) (added internal links)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

समय-समय, दो चरों के बीच संबंध इतना जटिल हो जाता है कि हमें जटिलता को कम करने और इसे संभालना आसान बनाने के लिए एक तीसरा चर प्रस्तुत करना आवश्यक लगता है। इस तीसरे चर को गणित में प्राचल कहा जाता है और फलन को प्राचलिक रूप में कहा जाता है। इसलिए फलन को स्पष्ट रूप से परिभाषित करने के बजाय, और दोनों को तीसरे चर के संदर्भ में परिभाषित किया जाता है। मूल रूप से, यह एक परतंत्र चर का दूसरे परतंत्र चर के संदर्भ में अवकलज है, और दोनों परतंत्र चर एक स्वतंत्र चर पर निर्भर करते हैं। इसलिए, केवल एक समीकरण के बजाय दो समीकरण हैं। एक समीकरण को प्राचल से जोड़ता है और एक समीकरण को प्राचल से जोड़ता है।

फलन का प्राचलिक रूप में अवकलज

किसी अन्य चर्चा में जाने से पहले प्राचलिक फलन के व्यवहार को समझना बेहद आवश्यक है। तो चलिए एक उदाहरण से प्रारंभ करते हैं:

हम साधारणतः त्वरण को इस तरह परिभाषित करते हैं:

लेकिन त्वरण की एक वैकल्पिक परिभाषा भी है जो हमें यह बताती है:

फलन और यानी वेग और स्थिति क्रमशः समय के संदर्भ में व्यक्त किए जाते हैं जो यहाँ प्राचलहै। इसलिए हम कह सकते हैं कि वेग के बराबर है और स्थिति के बराबर है। तो हम अवकलन विधि का उपयोग करके अवकलज की गणना कैसे करेंगे? आइए पता लगाते हैं।

यदि बराबर है और बराबर है और वे प्राचलt के दो अलग-अलग फलन हैं, तो को के फलन के रूप में परिभाषित किया जा सकता है। तब:

मान लें यह दिया गया है कि

या फिर,

बशर्ते कि

यह बहुत स्पष्ट है कि यह के संदर्भ में फलन का पहला अवकलज है जब उन्हें प्राचलिक रूप में दर्शाया जाता है। इसलिए, हम दूसरे अवकलज की गणना इस प्रकार कर सकते हैं:

हम को प्राचलिक फलन के रूप में मानते हुए, प्रथम-क्रम प्राचलिक अवकलन को पुनः लागू कर सकते हैं:

हम इसी तरह उच्च-क्रम अवकलज की गणना कर सकते हैं। मात्र एक चीज जो हमें याद रखनी है वह यह है कि जब भी हम अवकलज की गणना करते हैं, तो यह का फलन बन जाएगा।

उदाहरण

प्रश्न 1) और को हल करें

समाधान 1)

अतः,


प्रश्न 2)

समाधान 2)

अतः,


प्रश्न 5)

समाधान 5)  

अतः,

जहाँ ,