अंतराल R के उपसमुच्चय के रूप में: Difference between revisions

From Vidyalayawiki

(New Mathematics Class11 Hindi Page Created)
 
(added internal links)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
[[Category:कक्षा-11]]
[[Category:कक्षा-11]]
[[Category:गणित]]
[[Category:गणित]]
परिभाषा - समुच्चयों पर विचार करते हुए :
यदि समुच्चय <math>A</math> का प्रत्येक अवयव, समुच्चय <math>B</math> का भी एक अवयव है, तो <math>A</math>, <math>B</math> का [[उपसमुच्चय]] कहलाता है।
अन्य शब्दों में, <math>A \subset B</math>, यदि जब कभी <math>a \in A</math>, तो <math>a \in B</math>. बहुधा प्रतीक '<math>\Longrightarrow</math>', जिसका अर्थ 'तात्पर्य है' होता है, का प्रयोग सुविधाजनक होता है। इस प्रतीक का प्रयोग कर के, हम उपसमुच्चय की परिभाषा इस प्रकार लिख सकते हैं:
<math>A \subset B</math>, यदि <math>a \in A</math> <math>\Longrightarrow</math> <math>a \in B</math>
जैसा कि उपसमुच्चय की परिभाषा और उपरयुक्त उदाहरण से स्पष्ट होता है कि समुच्चय  के बहुत से महत्वपूर्ण उपसमुच्चय हैं। निम्नलिखित उदाहरण  से भी हम देख सकते हैं की यदि
परिमेय संख्याओं का समुच्चय <math>M</math>, [[वास्तविक संख्याओं के समुच्चय के उपसमुच्चय|वास्तविक संख्याओं]] के समुच्चय <math>R</math> का एक उपसमुच्चय है और हम लिखते हैं कि <math>M\subset R</math>।
मान लेते हैं कि <math>a, b \in R</math> और <math>a < b</math>।  तब वास्तविक संख्याओं का समुच्चय <math>\{y:a<y<b\}</math> एक विवृत अंतराल कहलाता है और प्रतीक <math>(a,b)</math> द्वारा निरूपित होता है। <math>a</math> और  <math>b</math> के बीच स्थित सभी बिंदु इस अंतराल में होते हैं परंतु  <math>a</math> और  <math>b</math> स्वयं इस अंतराल में नहीं होते हैं।
वह अंतराल जिसमें अंत्य बिंदु भी होते हैं, संवृत ( बंद) अंतराल कहलाता है और प्रतीक <math>[a,b ]</math> द्वारा निरूपित होता है।
अतः <math>[a,b]=\{x:a \leq x \leq b \}</math> ऐसे अंतराल भी हैं जो एक अंत्य बिंदु पर बंद और दूसरे पर खुले होते
<math>[a,b)=\{x:a \leq x \leq b \}</math>, <math>a</math> से <math>b</math>, तक एक खुला अंतराल हैं जिसमें <math>a</math> अंतर्विष्ट है किंतु <math>b</math> अपवर्जित है।
<math>(a,b]=\{x:a \leq x \leq b \}</math>, <math>a</math> से <math>b</math>, तक एक खुला अंतराल हैं जिसमें <math>b</math> सम्मिलित है किंतु <math>a</math> अपवर्जित है। 
[[File:अंतराल R के उपसमुच्चय के रूप में.jpg|thumb|500x500px|चित्र |left]]
इन संकेतों द्वारा वास्तविक संख्याओं के समुच्चय के उपसमुच्चयों के उल्लेख करने की एक वैकल्पिक विधि मिलती है। उदाहरण के लिए, यदि <math>A=(-3,5)</math>और <math>B=[-7,9]</math>, तो <math>A\subset B</math>। समुच्चय <math>[0,\infty)</math> ऋणेतर वास्तविक संख्याओं के समुच्चय को दर्शाता है, जबकि <math>(-\infty,0)</math> ॠण वास्तविक संख्याओं के समुच्चय को दर्शाता है। (-<math>(-\infty,\infty)</math>, <math>-\infty</math> से <math>\infty</math> तक विस्तृत रेखा से संबंधित वास्तविक संख्याओं के समुच्चय को प्रदर्शित करता है। वास्तविक रेखा पर <math>R</math> के उपसमुच्चयों के रूप में वर्णित उपर्युक्त अंतरालों को चित्र में दर्शाया गया है:

Latest revision as of 17:34, 6 November 2024

परिभाषा - समुच्चयों पर विचार करते हुए :

यदि समुच्चय का प्रत्येक अवयव, समुच्चय का भी एक अवयव है, तो , का उपसमुच्चय कहलाता है।

अन्य शब्दों में, , यदि जब कभी , तो . बहुधा प्रतीक '', जिसका अर्थ 'तात्पर्य है' होता है, का प्रयोग सुविधाजनक होता है। इस प्रतीक का प्रयोग कर के, हम उपसमुच्चय की परिभाषा इस प्रकार लिख सकते हैं:

, यदि

जैसा कि उपसमुच्चय की परिभाषा और उपरयुक्त उदाहरण से स्पष्ट होता है कि समुच्चय  के बहुत से महत्वपूर्ण उपसमुच्चय हैं। निम्नलिखित उदाहरण से भी हम देख सकते हैं की यदि

परिमेय संख्याओं का समुच्चय , वास्तविक संख्याओं के समुच्चय का एक उपसमुच्चय है और हम लिखते हैं कि

मान लेते हैं कि और । तब वास्तविक संख्याओं का समुच्चय एक विवृत अंतराल कहलाता है और प्रतीक द्वारा निरूपित होता है। और के बीच स्थित सभी बिंदु इस अंतराल में होते हैं परंतु और स्वयं इस अंतराल में नहीं होते हैं।

वह अंतराल जिसमें अंत्य बिंदु भी होते हैं, संवृत ( बंद) अंतराल कहलाता है और प्रतीक द्वारा निरूपित होता है।

अतः ऐसे अंतराल भी हैं जो एक अंत्य बिंदु पर बंद और दूसरे पर खुले होते

, से , तक एक खुला अंतराल हैं जिसमें अंतर्विष्ट है किंतु अपवर्जित है।

, से , तक एक खुला अंतराल हैं जिसमें सम्मिलित है किंतु अपवर्जित है।

चित्र








इन संकेतों द्वारा वास्तविक संख्याओं के समुच्चय के उपसमुच्चयों के उल्लेख करने की एक वैकल्पिक विधि मिलती है। उदाहरण के लिए, यदि और , तो । समुच्चय ऋणेतर वास्तविक संख्याओं के समुच्चय को दर्शाता है, जबकि ॠण वास्तविक संख्याओं के समुच्चय को दर्शाता है। (-, से तक विस्तृत रेखा से संबंधित वास्तविक संख्याओं के समुच्चय को प्रदर्शित करता है। वास्तविक रेखा पर के उपसमुच्चयों के रूप में वर्णित उपर्युक्त अंतरालों को चित्र में दर्शाया गया है: