वास्तविक संख्याओं के समुच्चय के उपसमुच्चय

From Vidyalayawiki

उपसमुच्चय संबंधों और फलनों की अवधारणाओं को परिभाषित करते हैं। ज्यामिति, अनुक्रम, प्रायिकता आदि में उपसमुच्चयों का ज्ञान आवश्यक है। एक समुच्चय के रूप में दर्शाए गए वस्तुओं का एक अच्छी तरह से परिभाषित संग्रह है। समुच्चय के तत्वों को अल्पविराम से अलग किया जाता है और कोष्ठक के भीतर संलग्न किया जाता है।

उदाहरण: परिमेय संख्याओं का समुच्चय , वास्तविक संख्याओं के समुच्चय का एक उपसमुच्चय है और हम लिखते हैं कि

जैसा कि उपसमुच्चय की परिभाषा और उपरयुक्त उदाहरण से स्पष्ट होता है कि समुच्चय के बहुत से महत्वपूर्ण उपसमुच्चय हैं। इनमें से कुछ के नाम हम नीचे दे रहे हैं:

प्राकृत संख्याओं का समुच्चय पूर्णांकों का समुच्चय

परिमेय संख्याओं का समुच्चय तथा , जिनको इस प्रकार पढ़ते हैं:

उन सभी संख्याओं का समुच्चय इस प्रकार है, कि भागफल , के बराबर है, जहाँ और पूर्णांक है और शून्य नहीं है।" के अवयवों में (जिसे से भी प्रदर्शित किया जा सकता है), , ( जिसे से भी प्रदर्शित किया जा सकता है) और आदि सम्मिलित हैं।

अपरिमेय संख्याओं का समुच्चय, जिसे से निरूपित करते हैं, शेष अन्य वास्तविक संख्याओं (परिमेय संख्याओं को छोड़कर) से मिलकर बनता है।

अतः और अर्थात् वह सभी वास्तविक संख्याएँ जो परिमेय नहीं है। के सदस्यों में और आदि सम्मिलित हैं।

इन समुच्चयों के मध्य कुछ स्पष्ट संबंध इस प्रकार हैं;